Amoo-Rajabi, O.; Moghimi, A.; Khazali H. (2012). Effect of ICV injection of ghrelin and leptin on T3 and T4 plasma levels in Rat. Physiology and Pharmacology; 16(1): 70-78.
Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. (2000). Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology; 141(11): 4255-4261.
Easterling, K.W.; Holtzman, S.G. (2001). Central discriminative effects of morphine in rats: training via intracerebroventricular administration. Brain research bulletin; 56(6): 545-551.
Ellacott, K.L.; Cone, R.D. (2004). The central melanocortin system and the integration of short-and long-term regulators of energy homeostasis. Recent progress in hormone research; 59(1): 395-408.
Fekete, C.; Kelly, J.; Mihály, E.; Sarkar, S.; Rand, W.M.; Légrádi, G.B.; Emerson, C.H.; Lechan, R.M. (2001). Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology; 142(6): 2606-2613.
Fekete, C.; Sarkar, S.; Rand, W.M.; Harney, J.W.; Emerson, C.H.; Bianco, A.C.; Lechan, R.M. (2002). Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology; 143(10): 3846-3853.
Gholami, K.; Kesmati, M.; Kazeminejhad, R.; Zangene, F.; Rasekh, A. (2007). Diverse effects of acute and chronic administrated levothyroxine on the morphine withdrawal syndrome in male mice. Physiology and Pharmacology; 11(1): 76-81.
Gosnell, B.A.; Levine, A.S.; Morley, J.E. (1983). The effects of aging on opioid modulation of feeding in rats. Life sciences; 32(24): 2793-2799.
Gozashti, M.H.; Mohammadzadeh, E.; Divsalar, K.; Shokoohi, M. (2014). The effect of opium addiction on thyroid function tests. Journal of Diabetes & Metabolic Disorders; 13(1): 5.
Gysling, K.; Wang, R.Y. (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain research; 277(1): 119-127.
Hagan, M.M.; Rushing, P.A.; Benoit, S.C.; Woods, S.C.; Seeley, R.J. (2001). Opioid receptor involvement in the effect of AgRP-(83-132) on food intake and food selection. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology; 280(3): R814-R821.
Hashimoto, H.; Fujihara, H.; Kawasaki, M.; Saito, T.; Shibata, M.; Otsubo, H.; Takei, Y.; Ueta, Y. (2007). Centrally and peripherally administered ghrelin potently inhibits water intake in rats. Endocrinology; 148(4): 1638-1647.
Hayashida, T.; Nakahara, K.; Mondal, M.; Date, Y.; Nakazato, M.; Kojima, M.; Kangawa, K.; Murakami, N. (2002). Ghrelin in neonatal rats: distribution in stomach and its possible role. Journal of Endocrinology; 173(2): 239-245.
Hochberg, Z.E.; Pacak, K.; Chrousos, G.P. (2003). Endocrine withdrawal syndromes. Endocrine Reviews; 24(4): 523-538.
Holst, B.; Holliday, N.D.; Bach, A.; Elling, C.E.; Cox, H.M.; Schwartz, T.W. (2004). Common structural basis for constitutive activity of the ghrelin receptor family. Journal of Biological Chemistry.
Iglesias, L.; Calzada, B.; Vega, J.; Hernandez, L.; Pérez-Casas, A. (1991). Effects of morphine on the pituitary-thyroid axis: morphological and analytical studies. Functional and developmental morphology; 1(4): 3-6.
Kamegai, J.; Tamura, H.; Shimizu, T.; Ishii, S.; Sugihara, H.; Wakabayashi, I. (2001). Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes; 50(11): 2438-2443.
Kim, M.; Small, C.; Stanley, S.; Morgan, D.; Seal, L.; Kong, W.; Edwards, C.; Abusnana, S.; Sunter, D.; Ghatei, M. (2000). The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. The Journal of clinical investigation; 105(7): 1005-1011.
Konecka, A.M.; Sadowski, B.; Jaszczak, J.; Panocka, I.; Sroczynska, I. (1984). Suppression of food and water intake after intracerebroventricular infusion of morphine and naloxone in rabbits. Archives internationales de physiologie et de biochimie; 92(3): 219-226.
Lawrence, C.B.; Snape, A.C.; Baudoin, F.M.-H.; Luckman, S.M. (2002). Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology; 143(1): 155-162.
Mahmoudi, F.; Mohsennezhad, F.; Khazali, H.; Ehtesham, H. (2011). The effect of central injection of ghrelin and bombesin on mean plasma thyroid hormones concentration. Iranian journal of pharmaceutical research: IJPR; 10(3): 627.
Mansouri, M.; Khazali, H. (2008). Determination of the effect of the interaction between Ghrelin and serotonin agonist (R)-8-OH-DPAT on the mean plasma concentrations of T3 & T4 in rat. Physiology and Pharmacology; 12(2): 142-148.
Mantzoros, C.S.; Moschos, S.J. (1998). Leptin: in search of role (s) in human physiology and pathophysiology. Clinical endocrinology; 49(5): 551-567.
Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. (2001). A role for ghrelin in the central regulation of feeding. Nature; 409(6817): 194.
Pereira Jr, J.C.; Pradella-Hallinan, M.; Pessoa, H.D.L. (2010). Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis. Clinics; 65(5): 547-554.
Rauhala, P.; Männistö, P.; Tuominen, R.K. (1988). Effect of chronic morphine treatment on thyrotropin and prolactin levels and acute hormone responses in the rat. Journal of Pharmacology and Experimental Therapeutics; 246(2): 649-654.
Sarkar, S.; Légrádi, G.; Lechan, R.M. (2002). Intracerebroventricular administration of α-melanocyte stimulating hormone increases phosphorylation of CREB in TRH-and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain research; 945(1): 50-59.
Shintani, M.; Ogawa, Y.; Ebihara, K.; Aizawa-Abe, M.; Miyanaga, F.; Takaya, K.; Hayashi, T.; Inoue, G.; Hosoda, K.; Kojima, M. (2001). Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes; 50(2): 227-232.
Wang, L.; Saint-Pierre, D.H.; Taché, Y. (2002). Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neuroscience letters; 325(1): 47-51.
Williams, J.T.; Christie, M.J.; Manzoni, O. (2001). Cellular and synaptic adaptations mediating opioid dependence. Physiological reviews; 81(1): 299-343.
Wren, A.M.; Small, C.J.; Abbott, C.R.; Dhillo, W.S.; Seal, L.J.; Cohen, M.A.; Batterham, R.L.; Taheri, S.; Stanley, S.A.; Ghatei, M.A. (2001). Ghrelin causes hyperphagia and obesity in rats. Diabetes; 50(11): 2540-2547.