با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزش زیست شناسی، دانشگاه فرهنگیان، ‏صندوق پستی 889-14665تهران، ایران‏

2 گروه کودکان، دانشکده پزشکی، دانشگاه علوم ‏پزشکی ایران، تهران، ایران‏

3 گروه آموزشی علوم جانوری، دانشکده علوم زیستی، ‏دانشگاه خوارزمی، تهران، ایران‏

10.30473/eab.2025.73762.1986

چکیده

هدف: نانوذرات می‌توانند به آسانی از غشای پلاسمایی عبور کنند و از طریق وارد شدن به سلول و اثر بر مسیر سیگنالینگ داخل سلولی و یا از طریق مجتمع‌شدن در محیط کشت و تشکیل داربست به‌عنوان سیستم‌های سازگار و مکانیکی ایده‌آل برای حمایت از تکثیر و تمایز سلولی در نظر گرفته شوند. هدف از این پژوهش بررسی تأثیر نانوذره گرافن اکساید بر تمایز عصبی سلول‌های بنیادی مزانشیمی موشی می‌باشد.
مواد و روش‌ها: سلول‌های بنیادی با روش فلاشینگ از مغز استخوان موش استخراج شد. در سه گروه مختلف به‌مدت 14 روز کشت یافتند. گروه کنترل (سلول‌های کشت‌یافته در محیط کشت تمایزی عصبی)، گروه1 (سلول‌های کشت‌یافته در محیط کشت عمومی و حاوی دوز µg/ml 5/1 گرافن اکساید) و گروه2 (سلول‌های کشت‌یافته در محیط کشت تمایزی عصبی و حاوی دوز µg/ml 5/1 گرافن اکساید). پس از گذشت 14 روز به‌منظور بررسی سمیت سلولی و میزان تمایز عصبی به‌ترتیب از تکنیک MTT و ICC استفاده شد.
نتایج: براساس یافته‌های تکنیک ایمونوسیتوشیمی و سمیت‌سنجی سلولی مشخص شد که هر سه مارکر تمایزی عصبی (Sox2، Btubulin ІІІ و MAP2) در گروه 1 و 2 همانند گروه کنترل بیان شده و هم‌چنین گرافن اکساید در دوز مورداستفاده اثرات سمی بر روی سلول‌ها نداشته است.
نتیجه‌گیری: این یافته‌ها نشان می‌دهد که ترکیبی از گرافن اکساید با محیط کشت عمومی و بدون اضافه‌کردن هیچ فاکتور رشد عصبی دیگر می‌تواند همانند گروه کنترل سبب القای بیان پروتئین‌های مهم دخیل در تمایز نورونی شود.

کلیدواژه‌ها

موضوعات

Chapman, A. R., Frankel, M. S., & Garfinkel, M. S. (1999). Stem cell research and applications: monitoring the frontiers of biomedical research. American Association for the Advancement of Science. Washington, DC, USA.
Dehmelt, L., & Halpain, S. (2005). The MAP2/Tau family of microtubule-associated proteins. Genome biology, 6, 1-10.
Geisert Jr, E. E., & Frankfurter, A. (1989). The neuronal response to injury as visualized by immunostaining of class III β-tubulin in the rat. Neuroscience letters, 102(2-3), 137-141.
Guo, R., Li, J., Chen, C., Xiao, M., Liao, M., Hu, Y., Liu, Y., Li, D., Zou, J., Sun, D., & Torre, V. (2021). Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids and Surfaces B: Biointerfaces, 200, 111590.
Guo, X., & Mei, N. (2014). Assessment of the toxic potential of graphene family nanomaterials. Journal of food and drug analysis, 22(1), 105-115.
Huber, G. E. R. D. A., & Matus, A. N. D. R. E. W. (1984). Differences in the cellular distributions of two microtubule-associated proteins, MAP1 and MAP2, in rat brain. Journal of Neuroscience, 4(1), 151-160.
Ikram, R., Shamsuddin, S. A. A., Mohamed Jan, B., Abdul Qadir, M., Kenanakis, G., Stylianakis, M. M., & Anastasiadis, S. H. (2022). Impact of graphene derivatives as artificial extracellular matrices on mesenchymal stem cells. Molecules, 27(2), 379.
Jiménez-Acosta, M. A., Hernández, L. J. R., Cristerna, M. L. P., Tapia-Ramírez, J., & Meraz-Ríos, M. A. (2022). Neuronal differentiation protocols of mesenchymal stem cells. Advances in Bioscience and Biotechnology, 13(1), 15-71.
Katsnelson, M. (2007). Graphene: Carbon in Two Dimensions. Materialstoday, 10(1-2), 20-27.
Kim, M., Ma, K. Y., Kim, H., Lee, Y., Park, J. H., & Shin, H. S. (2023). 2D materials in the display industry: status and prospects. Advanced Materials, 35(43), 2205520.
Kim, S. R.-S. (2013). Culture of Neural Cells and Stem Cells on Graphene. Tissue Engineering and Regenerative Medicine, 10(2), 39-46.
Rao, C. N. R., Biswas, K., Subrahmanyam, K. S., & Govindaraj, A. (2009). Graphene, the new nanocarbon. Journal of Materials Chemistry, 19(17), 2457-2469.
Rawat, S., Jain, K.G., Gupta, D., Raghav, P.K., Chaudhuri, R., Pinky, Shakeel, A., Arora, V., Sharma, H., Debnath, D., & Kalluri, A. (2021). Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells. Nanomedicine, 16(22), 1963-1982.
Ramos, J. S. (1998). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 149, 411-423.
Stevanovic, M., Drakulic, D., Lazic, A., Ninkovic, D. S., Schwirtlich, M., & Mojsin, M. (2021). SOX transcription factors as important regulators of neuronal and glial differentiation during nervous system development and adult neurogenesis. Frontiers in molecular neuroscience, 14, 654031.
Woodbury, D., Reynolds, K., & Black, I. B. (2002). Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. Journal of neuroscience research, 69(6), 908-917.
Xie, J. L., Wang, X. R., Li, M. M., Tao, Z. H., Teng, W. W., & Saijilafu. (2022). Mesenchymal stromal cell therapy in spinal cord injury: mechanisms and prospects. Frontiers in Cellular Neuroscience, 16, 862673.
Yang, K., Lu, R., Lu, J., Fan, S., Zhang, Q., Lou, Z., Ma, Y., Lu, G., Pan, R., & Zhang, J. (2022). Phenotypic and functional characterizations of mesenchymal stem/stromal cells isolated from human cranial bone marrow. Frontiers in Neuroscience, 16, 909256.
Yu, L., Wei, Y., Sun, H.X., Mahdi, A.K., Arteaga, C.A.P., Sakurai, M., Schmitz, D.A., Zheng, C., Ballard, E.D., Li, J., & Tanaka, N. (2021). Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell stem cell, 28(3), 550-567.