با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله مروری

نویسنده

گروه علوم پایه، دانشکده دامپزشکی، دانشگاه، ‏تبریز، تبریز، ایران‏

10.30473/eab.2024.71943.1960

چکیده

با جستجوی گسترده در پایگاه‌های اطلاعاتی مهم و بررسی مقالات جدیدتر، با ارجاع بیش‌تر و از مجلات معتبرتر مروری بر خواب زمستانی انجام شد. این مرور به بررسی استراتژی‌های بیوشیمیایی و مولکولی پستانداران زمستان‌خواب برای مقابله با سرما و کمبود غذا و آب پرداخته است. رشد و بقا در مواقع کمبود منابع نیازمند سازگاری رفتاری، فیزیولوژیکی، سلولی و مولکولی در مدت زمان نسبتاً کوتاهی است. خواب زمستانی مجموعه‌ای از استراتژی‌های فیزیولوژیکی است که به حیوانات اجازه می‌دهد در سرما و کمبود غذا و آب زندگی کنند. انواع خواب زمستانی در حیوانات مختلف متفاوت است. پستانداران زمستان‌خواب می‌توانند متابولیسم خود را کُند کنند، دمای بدنشان را کاهش دهند و به حالت خفتگی بروند. در این مرحله تأمین انرژی به‌طور عمده از چربی‌های ذخیره‌شده در دوره قبل از خواب زمستانی صورت می‌گیرد. همچنین سیستم عصبی- هورمونی گرسنگی، تشنگی و احساس سرما را در زمستان­خواب‌ها سرکوب می‌کند. خواب زمستانی تنها کاهش دمای و سایر پارامترهای حیاتی بدن نیست، بلکه یک فرایند فعال است که به‌صورت فصلی در سطوح سلولی و مولکولی تنظیم می‌شود. آموخته‌های ما از مکانیسم خواب زمستانی در حیوانات می‌تواند برای توسعه روش‌های بهبود سلامت انسان استفاده شوند. استراتژی‌های خواب زمستانی می‌توانند به کاهش آتروفی ناشی از عدم استفاده از عضلات و استخوان‌ها، افزایش زمان نگهداری اندام، مبارزه با چاقی و جلوگیری از آسیب ناشی از خون‌رسانی مجدد به‌دنبال انفارکتوس میوکارد و سکته مغزی کمک کنند. بسیاری از سؤالات در مورد خواب زمستانی باقی مانده است که باید در پژوهش‌های آینده موردتوجه قرار گیرد.

کلیدواژه‌ها

موضوعات

Andrews, M. T. (2019). Molecular interactions underpinning the phenotype of hibernation in mammals. Journal of Experimental Biology, 222(2), jeb160606.
Andrews, M. T., Russeth, K. P., Drewes, L. R., & Henry, P.-G. (2009). Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(2), R383-R393.
Augustine, V., Lee, S., & Oka, Y. (2020). Neural control and modulation of thirst, sodium appetite, and hunger. Cell, 180(1), 25-32.
Blanco, M. B., Dausmann, K. H., Faherty, S. L., Klopfer, P., Krystal, A. D., Schopler, R., & Yoder, A. D. (2016). Hibernation in a primate: does sleep occur? Royal Society Open Science, 3(8), 160282.
Bolborea, M., Pollatzek, E., Benford, H., Sotelo-Hitschfeld, T., & Dale, N. (2020). Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network. Proceedings of the National Academy of Sciences, 117(25), 14473-14481.
Elfeky, M., Tsubota, A., Shimozuru, M., Tsubota, T., Kimura, K., & Okamatsu-Ogura, Y. (2024). Regulation of Mitochondrial Metabolism by Hibernating Bear Serum: Insights into Seasonal Metabolic Adaptations. Biochemical and Biophysical Research Communications, 150510.
Feketa, V. V., Nikolaev, Y. A., Merriman, D. K., Bagriantsev, S. N., & Gracheva, E. O. (2020). CNGA3 acts as a cold sensor in hypothalamic neurons. Elife, 9, e55370.
Feng, N.Y., Junkins, M.S., Merriman, D.K., Bagriantsev, S. N., & Gracheva, E. O. (2019). Osmolyte depletion and thirst suppression allow hibernators to survive for months without water. Current Biology, 29(18), 3053-3058. e3053.
Frare, C., & Drew, K. (2021). Seasonal changes in adenosine kinase in tanycytes of the Arctic ground squirrel (Urocitellus parryii). Journal of chemical neuroanatomy, 113, 101920.
Giroud, S., Habold, C., Nespolo, R. F., Mejías, C., Terrien, J., Logan, S. M., ... Storey, K. B. (2021). The torpid state: recent advances in metabolic adaptations and protective mechanisms. Frontiers in Physiology, 11, 623665.
Guo, Q., Mi, X., Sun, X., Li, X., Fu, W., Xu, S., ... Chang, H. (2017). Remarkable plasticity of Na+, K+-ATPase, Ca2+-ATPase and SERCA contributes to muscle disuse atrophy resistance in hibernating Daurian ground squirrels. Scientific Reports, 7(1), 10509.
Haugg, E., Borner, J., Stalder, G., Kübber‐Heiss, A., Giroud, S., & Herwig, A. (2024). Comparative transcriptomics of the garden dormouse hypothalamus during hibernation. FEBS Open bio, 14(2), 241-257.
Hoffstaetter, L. J., Mastrotto, M., Merriman, D. K., Dib-Hajj, S. D., Waxman, S. G., Bagriantsev, S. N., & Gracheva, E. O. (2018). Somatosensory neurons enter a state of altered excitability during hibernation. Current Biology, 28(18), 2998-3004. e2993.
Horwitz, B. A., Chau, S. M., Hamilton, J. S., Song, C., Gorgone, J., Saenz, M., ... Chen, C.-Y. (2013). Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 305(7), R759-R768.
Jansen, H. T., Trojahn, S., Saxton, M. W., Quackenbush, C. R., Evans Hutzenbiler, B. D., Nelson, O. L., ... Kelley, J. L. (2019). Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Communications biology, 2(1), 336.
Junkins, M. S., Bagriantsev, S. N., & Gracheva, E. O. (2022). Towards understanding the neural origins of hibernation. Journal of Experimental Biology, 225(1), jeb229542.
Laursen, W. J., Schneider, E. R., Merriman, D. K., Bagriantsev, S. N., & Gracheva, E. O. (2016). Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proceedings of the National Academy of Sciences, 113(40), 11342-11347.
Liu, C., Yu, H., Li, Z., Chen, S., Li, X., Chen, X., & Chen, B. (2024). The future of artificial hibernation medicine: protection of nerves and organs after spinal cord injury. Neural regeneration research, 19(1), 22-28.
MacCannell, A. D., & Staples, J. F. (2021). Elevated ambient temperature accelerates aspects of torpor phenology in an obligate hibernator. Journal of Thermal Biology, 96, 102839.
Masento, N. A., Golightly, M., Field, D. T., Butler, L. T., & van Reekum, C. M. (2014). Effects of hydration status on cognitive performance and mood. British Journal of Nutrition, 111(10), 1841-1852.
Matos-Cruz, V., Schneider, E. R., Mastrotto, M., Merriman, D. K., Bagriantsev, S. N., & Gracheva, E. O. (2017). Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell reports, 21(12), 3329-3337.
Mohr, S. M., Bagriantsev, S. N., & Gracheva, E. O. (2020). Cellular, molecular, and physiological adaptations of hibernation: the solution to environmental challenges. Annual review of cell and developmental biology, 36(1), 315-338.
Oosterhof, M. M., Coussement, L., Guryev, V., Reitsema, V. A., Bruintjes, J. J., Goris, M., ... Henning, R. H. (2022). Liver transcriptomic and methylomic analyses identify transcriptional MAPK regulation in facultative hibernation of Syrian hamster. bioRxiv, 2022.2012. 2001.518631.
Ou, J., Ball, J. M., Luan, Y., Zhao, T., Miyagishima, K. J., Xu, Y., ... Xie, Z. (2018). iPSCs from a hibernator provide a platform for studying cold adaptation and its potential medical applications. Cell, 173(4), 851-863. e816.
Riemondy, K. A., Gillen, A. E., White, E. A., Bogren, L. K., Hesselberth, J. R., & Martin, S. L. (2018). Dynamic temperature-sensitive A-to-I RNA editing in the brain of a heterothermic mammal during hibernation. Rna, 24(11), 1481-1495.
Ruf, T., & Bieber, C. (2023). Why hibernate? Predator avoidance in the edible dormouse. Mammal Research, 68(1), 1-11.
Schwartz, C., Ballinger, M. A., & Andrews, M. T. (2015). Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(10), R1292-R1300.
Schwartz, C., Hampton, M., & Andrews, M. (2015). Hypothalamic gene expression underlying pre‐hibernation satiety. Genes, Brain and Behavior, 14(3), 310-318.
Shankar, A., Welch Jr, K. C., Eberts, E. R., Geiser, F., Halter, S., Keicher, L., ... Wolfe, S. W. (2023). Daily Torpor in Birds and Mammals: Past, Present, and Future of the Field (Vol. 63, pp. 1017-1027): Oxford University Press.
Sheriff, M. J., Fridinger, R. W., Tøien, Ø., Barnes, B. M., & Buck, C.L. (2013). Metabolic rate and prehibernation fattening in free-living arctic ground squirrels. Physiological and Biochemical Zoology, 86(5), 515-527.
Sone, M., Mitsuhashi, N., Sugiura, Y., Matsuoka, Y., Maeda, R., Yamauchi, A., ... Enju, S. (2023). Identification of genes supporting cold resistance of mammalian cells: lessons from a hibernator. bioRxiv, 2023.2012. 2027.573489.
Spector, D. A., Deng, J., Coleman, R., & Wade, J. B. (2015). The urothelium of a hibernator: the American black bear. Physiological reports, 3(6), e12429.
Steinwand, S., Stacher Horndli, C., Ferris, E., Emery, J., Murcia, J. D. G., Rodriguez, A. C., ... Davey, C. (2024). Conserved Noncoding Cis-Elements Associated with Hibernation Modulate Metabolic and Behavioral Adaptations in Mice. bioRxiv, 2024.2006. 2026.600851.
Tøien, Ø., Blake, J., Edgar, D. M., Grahn, D. A., Heller, H. C., & Barnes, B. M. (2011). Hibernation in black bears: independence of metabolic suppression from body temperature. Science, 331(6019), 906-909.
Wijenayake, S., Tessier, S. N., & Storey, K. B. (2017). Regulation of pyruvate dehydrogenase (PDH) in the hibernating ground squirrel, (Ictidomys tridecemlineatus). Journal of Thermal Biology, 69, 199-205.
Wu, G., Baumeister, R., & Heimbucher, T. (2023). Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold. Cells, 12(10), 1353.