با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم جانوری و زیست‌شناسی دریا، دانشکده ‏علوم و فناوری زیستی، دانشگاه شهید بهشتی، ‏تهران، ایران‏

2 گروه زیست‌شناسی، دانشکده علوم پایه، موسسه ‏آموزش عالی غیرانتفاعی آل طه، تهران، ایران‏

10.30473/eab.2023.68207.1913

چکیده

مهندسی بافت رشته ای نوظهور است که بر سه عنصر سلول، داربست و مولکول های زیستی فعال استوار بوده و می­تواند برای درمان آسیب های عضلانی مفید باشد. هدف از این مطالعه، بررسی تاثیر آسکوربیک اسید (AA) بر زیستایی سلول‌های بنیادی مزانشیمیِ مغز استخوانِ (BM-MSCs) کشت شده بر روی داربستِ سلول زدایی شده­ عضله­ اسکلتی می‌باشد. ابتدا BM-MSC از مغز استخوان پای رت استخراج و کشت شده و هویت سلول‌ها با استفاده از فلوسایتومتری بررسی شد. همچنین عضله اسکلتی پای رت، استخراج گردیده و با استفاده از محلول %1 SDS سلول زدایی انجام شد. برای اطمینان از سلول زدایی، رنگ آمیزی­های اختصاصی ماسون تریکروم، آلسیان بلو و DAPI انجام شد. سپس BM-MSCs روی داربست های سلول زدایی شده کشت شدند و با AA یک میلی­مولار به مدت 2 روز تیمار شدند. سپس با استفاده از میکروسکوپ الکترونی روبشی (SEM) و روش MTT به ترتیب بقاء و میزان زیستایی سلول‌ها بررسی شد. BM-MSCs مورفولوژی دوکی داشته و نتایج فلوسایتومتری نشان دهنده بیان   CD44 وCD90  و نیز عدم بیان CD45 و CD34 در بیش از 90 درصد سلول‌ها بود. رنگ آمیزی های اختصاصی حفظ کلاژن و گلیکوزآمینوگلیکان­ ها و عدم حضور DNA را در بافت سلول زدایی شده اثبات کردند. نتایج MTT  نشان داد که AA به طور معنی داری باعث افزایش زیستایی BM-MSCs می­شود (05/0(P<. همچنین نتایج SEM نشان داد که سلول‌ها در ­گروه تیمار شده با AA، گسترش بیشتری داشتند. بطور کلی، AA می­تواند با افزایش زیستایی BM-MSCs، بازده مهندسی بافت عضله را بهبود بخشد.

کلیدواژه‌ها

موضوعات

Blake, S. (2008). Vitamin C: The Citrus Antioxidant. Vitamins and Minerals Demystified, 55-71.
Chen, Z., Jin, M., He, H., Dong, J., Li, J., Nie, J., ... Wu, F. (2023). Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing. Journal of Orthopaedic Translation, 39, 63-73.
Choi, K.-M., Seo, Y.-K., Yoon, H.-H., Song, K.-Y., Kwon, S.-Y., Lee, H.-S., & Park, J.-K. (2008). Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. Journal of bioscience and bioengineering, 105(6), 586-594.
Cittadella Vigodarzere, G., & Mantero, S. (2014). Skeletal muscle tissue engineering: strategies for volumetric constructs. Frontiers in physiology, 5, 362.
Escobar, L. M., Escobar, J. D., Bendahan, Z., & Castellanos, J. E. (2021). Retinoic and ascorbic acids induce osteoblast differentiation from human dental pulp mesenchymal stem cells. Journal of Oral Biology and Craniofacial Research, 11(2), 143-148.
Fujisawa, K., Hara, K., Takami, T., Okada, S., Matsumoto, T., Yamamoto, N., & Sakaida, I. (2018). Evaluation of the effects of ascorbic acid on metabolism of human mesenchymal stem cells. Stem cell research & therapy, 9(1), 1-12.
Gilbert-Honick, J., Ginn, B., Zhang, Y., Salehi, S., Wagner, K. R., Mao, H.-Q., & Grayson, W. L. (2018). Adipose-derived stem/stromal cells on electrospun fibrin microfiber bundles enable moderate muscle reconstruction in a volumetric muscle loss model. Cell Transplantation, 27(11), 1644-1656.
Han, C., Wang, R., Xu, N., Wei, X., Wei, Q., & Xu, X. (2022). Visual analysis of mesenchymal stem cell research in liver disease based on bibliometrics. iLIVER, 1(4), 283-291.
Hematti, P. (2011). Human embryonic stem cell–derived mesenchymal stromal cells. Transfusion, 51, 138S-144S.
Jiwlawat, N., Lynch, E., Jeffrey, J., Van Dyke, J. M., & Suzuki, M. (2018). Current progress and challenges for skeletal muscle differentiation from human pluripotent stem cells using transgene-free approaches. Stem Cells International, 2018.
Khanban, H., Fattahi, E., & Talkhabi, M. (2019). In vivo administration of G9a inhibitor A366 decreases osteogenic potential of bone marrow-derived mesenchymal stem cells. Excli journal, 18, 300.
Langer, R., & Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. AIChE Journal, 49(12), 2990-3006.
Li, C.-J., Sun, L.-Y., & Pang, C.-Y. (2015). Synergistic protection of N-acetylcysteine and ascorbic acid 2-phosphate on human mesenchymal stem cells against mitoptosis, necroptosis and apoptosis. Scientific Reports, 5(1), 9819.
Lindblad, M., Tveden-Nyborg, P., & Lykkesfeldt, J. (2013). Regulation of vitamin C homeostasis during deficiency. Nutrients, 5(8), 2860-2879.
Nakamura, Y., Miyaki, S., Ishitobi, H., Matsuyama, S., Nakasa, T., Kamei, N., . . . Ochi, M. (2015). Mesenchymal‐stem‐cell‐derived exosomes accelerate skeletal muscle regeneration. FEBS letters, 589(11), 1257-1265.
Narciso, M., Ulldemolins, A., Junior, C., Otero, J., Navajas, D., Farre, R., ... & Almendros, I. (2022). Novel decellularization method for tissue slices. Frontiers in Bioengineering and Biotechnology, 10, 832178.
Narita, Y., Yamawaki, A., Kagami, H., Ueda, M., & Ueda, Y. (2008). Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell and tissue research, 333(3), 449-459.
Qazi, T. H., Duda, G. N., Ort, M. J., Perka, C., Geissler, S., & Winkler, T. (2019). Cell therapy to improve regeneration of skeletal muscle injuries. Journal of Cachexia, Sarcopenia and Muscle, 10(3), 501-516.
Qiu, X., Liu, S., Zhang, H., Zhu, B., Su, Y., Zheng, C., . . . Zhao, X. (2018). Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Stem cell research & therapy, 9, 1-15.
Raman, N., Imran, S. A., Noordin, K. B. A. A., Zaman, W. S. W. K., & Nordin, F. (2022). Mechanotransduction of mesenchymal stem cells (MSCs) during cardiomyocytes differentiation. Heliyon.
Sam Daliri, F., Talkhabi, M., Toolabi, N., Attari, F., & Kehtari, M. (2023). Investigation of the Effect of Conditioned Media of Mesenchymal Stem Cells Treated with Ascorbic Acid on Proliferative Behavior of Breast Cancer Cells. Journal of Animal Biology, 15(2), 233-245.
Savini, I., Catani, M. V., Duranti, G., Ceci, R., Sabatini, S., & Avigliano, L. (2005). Vitamin C homeostasis in skeletal muscle cells. Free radical biology and medicine, 38(7), 898-907.
Stevens, M. M., & George, J. H. (2005). Exploring and engineering the cell surface interface. Science, 310(5751), 1135-1138.
Takaku, Y., Ito, K., Chida, D., & Sato, T. (2022). Vascular endothelial growth factor-D upregulation in mesenchymal stem cells derived from melanocortin 2 receptor-deficient mice during osteoblast differentiation. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 34(6), 679-682.
Talaei-Khozani, T., & Yaghoubi, A. (2022). An overview of post transplantation events of decellularized scaffolds. Transplant Immunology, 74, 101640.
Talkhabi, M., Pahlavan, S., Aghdami, N., & Baharvand, H. (2015). Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes. Biochemical and Biophysical Research Communications, 463(4), 699-705.
Talovic, M., Patel, K., Schwartz, M., Madsen, J., & Garg, K. (2019). Decellularized extracellular matrix gelloids support mesenchymal stem cell growth and function in vitro. Journal of tissue engineering and regenerative medicine, 13(10), 1830-1842.
Urciuolo, A., & De Coppi, P. (2018). Decellularized tissue for muscle regeneration. International Journal of Molecular Sciences, 19(8), 2392.
VanDusen, K. W., Syverud, B. C., Williams, M. L., Lee, J. D., & Larkin, L. M. (2014). Engineered skeletal muscle units for repair of volumetric muscle loss in the tibialis anterior muscle of a rat. Tissue Engineering Part A, 20(21-22), 2920-2930.
Wahyuningsih, K. A., Karina, K., Rosadi, I., Rosliana, I., & Subroto, W. R. (2020). Effect of ascorbic acid on morphology of post-thawed human adipose-derived stem cells. Stem Cell Investigation, 7.
Wang, Y., Singh, A., Xu, P., Pindrus, M. A., Blasioli, D. J., & Kaplan, D. L. (2006). Expansion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells on a vitamin C functionalized polymer. Biomaterials, 27(17), 3265-3273.
Yarlagadda, P. K., Chandrasekharan, M., & Shyan, J. Y. M. (2005). Recent advances and current developments in tissue scaffolding. Bio-medical materials and engineering, 15(3), 159-177.