با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، مرکز تحقیقات فناوری سلول‌های بنیادی، دانشگاه علوم پزشکی ‏شیراز، شیراز، ایران

2 استادیار، گروه بیولوژی تولیدمثل، دانشکده علوم و فناوری‌های نوین ‏پزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

3 دکتری‎ ‎پزشکی مولکولی، مرکز تحقیقات فناوری سلول‌های بنیادی، دانشگاه ‏علوم پزشکی شیراز، شیراز، ایران

4 دکتری جانوری سلولی تکوینی، مرکز تحقیقات فناوری سلول‌های بنیادی، ‏دانشگاه علوم پزشکی شیراز، شیراز، ایران

چکیده

پلی‌آکریلات‌سدیم ماده‌ای است با قدرت جذب آب و رطوبت بالا که از آن در ساخت پدهای بهداشتی استفاده می‌گردد. در این مطالعه تأثیر این ماده بر میزان تکوین جنین و میزان بیان ژن‌های دخیل در آپوپتوز و ژن‌های آنتی‌اکسیدانت در بلاستوسیست بررسی گردید. موش‌های ماده بالغ با تزریق هورمون‌های گنادوتروپین سرم مادیان باردار (PMSG) و گنادوتروپین جفت انسان (hCG)  تحریک تخمک‌گذاری شده و پس از قرار گرفتن در کنار موش‌های نر، زیگوت‌ها از لوله‌های تخمدانی جمع‌آوری شده و در چهار گروه در محیط کشت حاوی غلظت‌های 0، 5، 25 و 50 میکروگرم بر میلی‌لیتر پلی‌آکریلات‌سدیم انتقال داده شدند. زیگوت‌ها تا مرحله بلاستوسیست کشت داده شد و تکوین جنین مورد بررسی قرار گرفت. بیان ژن‌های مورد نظر در بلاستوسیست‌ها به روش real time RT-PCR مورد آزمون قرار گرفت. از آنالیز واریانس یکطرفه (ANOVA) و تست تعقیبی دانکن برای تعیین تفاوت بین میانگین گروه‌ها استفاده شد. میزان تشکیل بلاستوسیست در گروه دارای بالاترین غلظت پلی‌آکریلات‌سدیم نسبت به گروه کنترل کمتر بود (05/0P<). میزان بیان ژن Bcl-2 در گروه دارای غلظت 5 میکروگرم بر میلی‌لیتر نسبت به گروه کنترل افزایش یافت و در گروه دارای غلظت 50 میکروگرم بر میلی‌لیتر نسبت به گروه‌های دارای غلظت 5 و 25 میکروگرم بر میلی‌لیتر کاهش یافت (05/0P<). میزان بیان ژن Bax/Bcl-2 و میزان بیان ژن Caspase-3 در گروه دارای غلظت 50 میکروگرم بر میلی‌لیتر نسبت به گروه صفر، 5، 25 میکروگرم بر میلی‌لیتر افزایش یافت (05/0P<). بنابراین غلظت‌های بالای سدیم‌پلی‌اکریلات از طریق سیستم آپوپتوز تأثیر مخرب بر جنین دارد.

کلیدواژه‌ها

Cao, W.; Zhu, X.; Tang, Z.; Song, Y. (2019). A Pleural Effusion Model in Rats by Intratracheal Instillation of Polyacrylate/Nanosilica. JoVE (Journal of Visualized Experiments);(146): e58560.
Driscoll, K.E. (1996). Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhalation toxicology; 8: 139-154.
Esteves, S.C. (2014). Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. International braz j urol; 40(4): 433-453.
Garay-Jimenez, J.C.; Turos, E. (2011). A convenient method to prepare emulsified polyacrylate nanoparticles from for drug delivery applications. Bioorganic & medicinal chemistry letters; 21(15): 4589-4591.
Haselbach, J.; Berner, T.; Wright, H.; Dunlap, E. (2000). Single-Dose Oral Toxicity Study of a Cross-linked Sodium Polyacrylate/Polyvinyl Alcohol Copolymer in Chickens (Gallus domesticus). Regul. Toxicol. Pharmacol.; 32(3): 332-336.
Henderson, W.R.; Barnbrook, J.; Dominelli, P.B.; Griesdale, D.E.; Arndt, T.; Molgat-Seon, Y.; Foster, G.; Ackland, G.L.; Xu, J.; Ayas, N.T. (2014). Administration of intrapulmonary sodium polyacrylate to induce lung injury for the development of a porcine model of early acute respiratory distress syndrome. Intensive care medicine experimental; 2(1): 1-16.
Hong, S.H.; Ham, S.Y.; Kim, J.S.; Kim, I.-S.; Lee, E.Y. (2016). Application of sodium polyacrylate and plant growth-promoting bacterium, Micrococcaceae HW-2, on the growth of plants cultivated in the rooftop. international biodeterioration & biodegradation; 113: 297-303.
Khodadadi Dehkordi, D.; Shamsnia, S.A. (2020). Application of Reclaimed Sodium Polyacrylate to Increase Soil Water Retention. CLEAN–Soil, Air, Water; 48(11): 2.
Liu, Y.; Sun, Y.; Sun, L.; Wang, Y. (2016). In vitro and in vivo study of sodium polyacrylate grafted alginate as microcapsule matrix for live probiotic delivery. Journal of Functional Foods; 24: 429-437.
Manzur, T.; Iffat, S.; Noor, M.A. (2015). Efficiency of sodium polyacrylate to improve durability of concrete under adverse curing condition. Advances in Materials Science and Engineering; 2015.
Müller, G. (1987). Bekturov, EA; Bakauova, Z. Kh.: Synthetic Water‐Soluble Polymers in Solution 241 S., 87 Abb., 30. Tab., Format 15× 23 cm. Basel/Heidelberg/New York: Huethig & Wepf 1986, Wiley Online Library.
Ntekpe, M.E.; Mbong, E.O.; Edem, E.N.; Hussain, S. (2020). Disposable Diapers: Impact of Disposal Methods on Public Health and the Environment. Am J Med Public Health. 2020; 1 (2); 1009.
Pandey, S.P.; Shukla, T.; Dhote, V.K.; Mishra, D.K.; Maheshwari, R.; Tekade, R.K. (2019). Use of polymers in controlled release of active agents. Basic fundamentals of drug delivery, Elsevier: 113-172.
Petkar, K.C. (2019). Polyacrylate Nanoparticles as a Promising Tool for Anticancer Therapeutics. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics, Elsevier; 35-56.
Rai, P.; Lee, B.-M.; Liu, T.-Y.; Yuhui, Q.; Krause, E.; Marsman, D.S.; Felter, S. (2009). Safety evaluation of disposable baby diapers using principles of quantitative risk assessment. Journal of Toxicology and Environmental Health, Part A; 72(21-22): 1262-1271.
Reingold, A.L. (1991). Toxic shock syndrome: an update. American journal of obstetrics and gynecology; 165(4): 1236-1239.
Ren, H.; Huang, X. (2010). Polyacrylate nanoparticles: toxicity or new nanomedicine? European Respiratory Journal; 36(1): 218-221.
Ritthidej, G.C. (2011). Nasal delivery of peptides and proteins with chitosan and related mucoadhesive polymers. Peptide and protein delivery, Elsevier: 47-68.
Song, Y.; Li, X.; Du, X. (2009). Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur. Respir. J.; 34(3): 559-567.
Soni, V.; Pandey, V.; Tiwari, R.; Asati, S.; Tekade, R.K. (2019). Design and evaluation of ophthalmic delivery formulations. Basic Fundamentals of Drug Delivery, Elsevier: 473-538.
Tiwari, R.R.; Sadhu, H.G.; Sharma, Y.K. (2021). Respiratory health of workers exposed to polyacrylate dust. Lung India; 38(3): 252.
Turos, E.; Reddy, G.S.K.; Greenhalgh, K.; Ramaraju, P.; Abeylath, S.C.; Jang, S.; Dickey, S.; Lim, D.V. (2007). Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA. Bioorg. Med. Chem. Lett.; 17(12): 3468-3472.
Turos, E.; Shim, J.-Y.; Wang, Y.; Greenhalgh, K.; Reddy, G.S.K.; Dickey, S.; Lim, D.V. (2007). Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg. Med. Chem. Lett.; 17(1): 53-56.
Zhu, X.; Cao, W.; Chang, B.; Zhang, L.; Qiao, P.; Li, X.; Si, L.; Niu, Y.; Song, Y. (2016). Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers. International journal of nanomedicine; 11: 1593.
Zhuang, W.; Li, L.; Liu, C. (2013). Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil. SpringerPlus, Springer.