اثر تزریق داروهای سولپیراید و بروموکریپتین به داخل هسته شکمی میانی هیپوتالاموس بر ترشح بزاق در موش صحرایی

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار، فیزیولوژی جانوری، دپارتمان زیست‌شناسی، دانشگاه پیام نور، تهران

10.30473/eab.2017.6166

چکیده

اساس این مطالعه بر این مبنا بود که آیا داروهای آنتی­سایکوز که افراد تحت مراقبت‌های بالینی مصرف می‌کنند، همانند سولپیراید بلـوک‌کننـده گیرنـده D2 دوپامینـی و بروموکریپتیـن تحریک‌کننده گیرنـده D1 دوپامینـی قـادرند روی ترشح غدد برون‌ریز دستگاه گوارش، به‌ویژه غده بزاقی تأثیر داشته باشند. آیا تغییرات ترشح بزاق حاصل اثرات اولیه داروهای مصرف شده است یا اینکه به دنبال گرسنگی، تشنگی و گوارش مواد غذایی در دهان است. در این مطالعه 70 سر موش صحرایی تحت بیهوشی عمومی زیر دستگاه استرئوتاکس قرار گرفتند و به 7 گروه تقسیم شدند: یک گروه کنترل، دو گروه شم a و b که حلّال دارویی دریافت می‌کردند، دو گروه سولپیراید (داروی آنتی سایکوز، آنتاگونیست گیرنده D2 دوپامینی) با دوزهای 4 و 8 میکروگرم، یک گروه بروموکریپتین (آگونیست گیرنده‌های D1 و D2 دوپامینی) با دوز 25 میکروگرم و یک گروه مختلط که سولپیراید 8 میکروگرم را همراه با بروموکریپتین 25 میکروگرم دریافت می‌کردند. در این مطالعه میزان ترشح بزاق برحسب حجم (میلی لیتر) اندازه‌گیری می­شد و سپس با استفاده از برنامه نرم‌افزار آماری SPSS گروه‌ها با یکدیگر مقایسه شدند (تست ANOVA). یافته های مطالعه نشان داد که گروه سولپیراید 4 میکـروگرم نتـوانست ترشح بزاق را افزایش دهد، امـا گـروه سولپیراید 8 میکروگرم و گروه مختلط به‌طور معنی‌داری حجم بزاق را افزایش می­دادنـد. بروموکریپتیـن (25 میکروگـرم) به تنهایی نتوانست ترشح بزاق را به‌طور معنی‌دار افزایش دهد، اما همراه با سولپیراید 8 میکروگرم قادر به افزایش معنی‌داری در ترشح بزاق شد. بنابراین سیستم دوپامین موجود در هسته شکمی میانی هیپوتالاموس اثرات قابل توجهی در ترشح غدد برون­ریز دستگاه گوارشی دارد.

کلیدواژه‌ها

موضوعات


Abbasnejad, M.; Karimian, S.M.; Zarrindast, M.R.; Faghihi, M.; Bahram, P.; (2001). The Effects of bromocriptine injection in ventromedial nucleus of hypothalamus on food and water intake as well as gain in adult male rats. Cell J (Yakhteh); 3(2): 97-102.

Ahima, R.S.; Osei, S.Y.; (2001). Molecular regulation of eating behavior: new insights and prospects for therapeutic strategis. Trends Mol Med; 7(5): 205-208.

Akubuiro, A.; Bridget Zimmerman, M.; Boles Ponto, LL.; Walsh, SA.; Sunderland, J.; McCormick, L.; Singh, M; (2013). Hyperactive hypothalamus, motivated and non-distractible chronic overeating in ADAR2 transgenic mice. Genes Brain Behav; 12(3): 311-322.

Baptista, T.; Contreras, Q.; Teneud, L.; Albornoz, M.A.; Aciosta, A.; (1998). Mechanism of the neuroleptic-induced obesity in female rats. Prog Neuropsychopharmacol Biol Psychiatry; 22(1): 187-198.

Baptistaa, T.; de. Baptistab, E.A.; Lalonde, J.; Plamondon, J.; Kin, N.M.; Beaulieu, S.; (2004). Comparative effects of the antipsychotics sulpiride and risperidone in female rats on energy balance, body composition, fat morphology and macronutrient selection. Prog Neuropsychopharmacology Biol Psychiatry; 28(8): 1305-1311.

Baptista, T.; Molina, MG.; Martinez, J.L.; de Quijada, M.; Calanche de Cuesta, I.; Acosta, A.; (1997). Effects of the antipsychotic drug sulpiride on reproductive hormones in healthy premenopausal women: relationship with body weight regulation. Pharmacopsychiatry; 30(6): 256-262.

Bern, R.M.; Levy, M.N.; (2012). Medical Physiology. (4th edition): USA-Mosby year book; 58-908.

Beverly, JL.; Beverly, MF.; Meguid, MM.; (1995). Alteration in extracellular GABA in the ventral hypothalamus of rats in recponse to glucoprivation. AmJ Physiol; 269: 1174-1178.

Brown, J.H.; Taylor, P.; Hardman, J.G.; Limbird, L.E.; (1996). The Pharmacological Basis of Therapeutics. McGraw–Hill; 9th edition: 141-160.

Carruba, MO.; Riccardi, S.; Spano, P.; Mantegazza, P.; (1985). Dopaminergic and serotoninergic anorectics differentially antagonize insuline- and 2-DG- induced hyperphagia. Life Sci; 36(18): 1739-1749.

Cone, R.D.; (1999). The central melanocortin system and energy homeostasis. Trends Endocrinol Metab; 10(6): 211-216.

Feldman, R.S.; Meyer, J.S.; Qenzer, L.F.; (1997). Principles of neuropsychopharmachology. United State of America. Sinauer; 239-307.

Fernandez-Solari, J.P.; Prestifilippo, P.; Vissio, M.; Ehrhart-Bornstein, S.R.; Bornstein, V.; Rettori, J.C.; Elverdin.; (2009). Anandamide injected into the lateral ventricle of the brain inhibits submandibular salivary secretion by attenuating parasympathetic neurotransmission. Brazilian Journal of Medical and Biological Research; 42: 537-544.

Fetissov, S.O.; Meguid, M.M.; Sato, T.; Zhang, L.H.; (2002). Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. Am J Physiol Regul Integr Comp Physiol; 283(4): 905-910.

Gallacher, D.V.; Petersen O.H.; (1983). Stimulus-secretion coupling in mamalian salivary glands in gastrointestinal physiology. Baltimor; 28(chpt.1): 1-51.

Hainsworth FR.; Epstein AN.; (1966). Severe impairment of heatinduced saliva-spreading in rats recovered from lateral hypothalamic lesions. Science; 153: 1255-1257.

H.K. Kleitz-Nelson.; C.A. Cornil.; J. Balthazart.; G.F. Ball.; (2010). Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail. Eur J Neurosci; 32(1): 118-129.

Donaldson.; J. Mitchell.; D. Templeton.; (1984). Electrical stimulation of the salivatory nucleus in the rat. J. Physiol; 356: 1-7.

Kanosue K.; Nakayama T.; Tanaka H.; Yanase M.; Yasuda H.; (1990). Modes of action of local hypothalamic and skin thermal stimulation on salivary secretion in rats. J Physiol; 424: 459-471.

Lung, M.A.; (2003). Autonomic nervous control of myoepithelial cells and secretion in submandibular gland of anaesthetized dogs. J Physiol; 546: 837-850.

Parada, M.A.; Hernandez, L.; Puig de parade, M.; Paez, X.; Hobel, B.G.; (1990). Dopamin in the lateral Hypothalamus may be involved in the inhibition of locomotion related to food and water seeking. Brain Res Bull; 25(6): 961-968.

Paxinos, G.; Keith, B.; (2004). Franklin J. The Mouse Brain in Stereotaxic Coordinates: Gulf Professional Publishing.

Rasheed, M.; Al Ghasham, A.; (2012). Central dopaminergic system and its implications in stress-mediated neurological disorders and gastric ulcers: Short Review. Adv in Pharma Sci; 1-10.

Renzi A.; Colombari E.; Mattos Filho TR.; Silveira JE.; Saad WA.; Camargo LA.; (1993). Involvement of the central nervous system in the salivary secretion induced by pilocarpine in rats. J Dent Res; 72: 1481-1484.

Renzi, A.; De Luca, L.A. Jr.; Menani, J.V.; (2002). Lesions of the lateral hypothalamus impair pilocarpine-induced salivation in rats. Brain Res Bull; 58: 455-459.

Takakura, A.C.; Moreira, T.S.; Laitano, S.C.; de Luca Junior, L.A.; Renzi, A.; Menani, J.V.; (2003). Central muscarinic receptors signal pilocarpine-induced salivation. J Dent Res; 82: 993- 997.

Tandler, B.; Phillips, C.J. (1998). Microstructure of mammalian salivary glands and its relationship to diet. Oral Frontiers on Biology; 10: 21-35.

Borella, T.L.; De Luca, L.A.Jr.; Colombari, D.S.A.; Menani, J.V.; (2008). Central muscarinic receptor subtypes involved in pilocarpine-induced salivation, hypertension and water intake. British Journal of Pharmacology; 155: 1256-1263.

Toushih, M.; Shahbazi, F.; Ghajarzadeh, M.; Vahedi, Mazdabadi N.; (2014). The Effect of sulpiride and bromocriptine injection into ventromedial nucleus of hypothalamus on the volume and acidity of gastric acid secretion in the rat. Experimental Animal Biology Journal; 10(2): 75-82.

Wang, G.J.; Volkow, N.D.; Fowler, J.S.; (2002). The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets; 6(5): 601-609.

Xiaojiao, Guo.; Zongyuan, Ma.; Le Kang, L.; (2015). Two dopamine receptors play different roles in phase change of the migratory locust. Frontiers in Behavioral Neuroscience; 80(9): 1–13.

Yoshica, K.; Yoshida, T.; Wakabayashi, Y.; Nishioka, H.; Kondo, M.; (1989). Effects of exercise training on brown adipose tissue thermogenesis in overiectomised obes rats. Endocrinal Jpn; 36(3): 403-408.

Yun, I.A.; Nicola, S.M.; Fields, H.L.; (2004). Contrasting effects of dopamine and glutamate receptor antagonist injection in the nucleus accumbens suggest a neural mechanism underlying cue-evoked goal-directed behavior. Eur J Neurosci; 20(1): 249-263.