تأثیر نانو‌ذرات نقره بر شاخص‌های ایمنی و آنزیم‌های سرم خون ماهی شیربت (Barbus grypus)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه شیلات، دانشکده علوم دریایی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران

2 استادیار، گروه علوم درمانگاهی، دانشکده دامپزشکی دانشگاه شهید چمران اهواز، اهواز، ایران

10.30473/eab.2018.6156

چکیده

قدرت باکتری کشی سرم در تیمار­های 1 درصد، 2 درصد و 4 درصد 50LC در روز 21 و در تیمار 8 درصد 50LC در روزهای 14 و 21 افزایش معنی­داری را نسبت به تیمار شاهد نشان داد (05/0p<). همچنین میزان فعالیت لیزوزیم سرم در تیمار 4 درصد 50LC در روز 21 و در تیمار 8 درصد 50LC در روز 14و 21 افزایش معنی‌داری را نسبت به تیمار شاهد نشان داد (05/0p<). میزان آنزیم­های آلکالین فسفاتاز (ALP) و لاکتات دهیدروژناز (LDH)در تیمار 8 درصد 50LC در روز 21 افزایش معنی­داری پیدا کرد (05/0p<). همچنین میزان آنزیم­های گلوتامیک اگزال استیک ترانس آمیناز (SGOT) و گلوتامیک پیروویک ترانس آمیناز (SGPT) در تیمار 2 درصد 50LC در روزهای 14 و 21 و در تیمارهای 4 و 8 درصد 50LC در روزهای 7، 14 و21 افزایش معنی‌داری نسبت به تیمار شاهد پیدا کرد (05/0p<). لذا می­توان نتیجه گرفت که غلظت­های تحت کشنده نانو ذرات نقره علاوه بر تأثیر مثبت بر روی شاخص­های ایمنی سبب افزایش آنزیم­های سرم خون ماهی شیربت می­شوند.

کلیدواژه‌ها

موضوعات


Ademuyiwa, O.; Ugbaja, R.; Rotimi, S.; Abam, E.; Okediran, B.; Dosumu, O.; Onunkwor, B. (2007). Erythrocyte acetylcholinesterase activity as a surrogate indicator of lead-induced neurotoxicity in occupational lead exposure in Abeokuta, Nigeria. Environ. Toxicol. Pharmacol; 24: 183-188.

Annino, J.S.; Gese, R.S. (1976). Clinical chemistry principle and procedures .Fourth edition. Little Brown and Company Boston. 

Aydın, R.; Köprücü, K. (2005). Acute toxicity of diazinon on the common carp (Cyprinus carpio L.) embryos  and larvae. Pestic. Biochem. Physiol; 82, 220-225.

Banaee, M.; Mirvaghefi, A.R.; Rafei, G.R.; Majazi Amir, B. (2008). Effects of sub-lethal diazinon concentration on blood plasma biochemistry, International Journal Environmental Research; 2; 189-198.

Bar-Ilan, O.; Albrecht, R.M.; Fako, V.E.; Furgeson, D.Y. (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebra fish embryos Small; 5(16): 1897-1910.

Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. (2008). Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing, Ecotoxicology; 17: 387-395.

Bilberg, K.; Malte, H.; Wang, T.; Baatrup, E. (2010). Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol; 96: 32-38.

Boudou, A.; Ribeyre, F. (1997).  Aquatic ecotoxicology: From the ecosystem to the cellular and molecular levels. Environmental Health Perspectives; 105: 21-35.

Chae, Y. J.;  Pham, C.H.; Lee, J.; Bae, E.;  Yi, J.;  Gu, M.B. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes) Aquatic Toxicology; 94(4): 320-327.

Chen, X.; Schluesener, H.; Nanosilver, J. (2008). A nanoproduct in medical application. Toxicology Letters; 176 (1): 1-12.

Choi, O.; Yu, C.Y.; Fernández, E.; Choi, Z.H. (2010). Interactions of nanosilver with Escherichia coli cellsin planktonic and biofilm cultures, Water Res., doi:10.1016/j. watres.2010.06.069.

Chopra, I. (2007). The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? Journal of Antimicrobial hemotherapy; 59 (4): 587-590.

Ellis, A.E. (1990). Lysozyme assay. In: Stolen, J.S.; Fletcher, D.P.; Anderson, B.S.; Robertson, B.S. (Eds.), Techniques in Fish Immunology. SOS Publication, Fair Haven, NJ, pp. 101-103

Fabrega, J.; Fawcett, S.R.; Renshaw, J.C.; Lead, J.R. (2009). Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol a; 43: 7285-90.

Farkas, J.; Christianc, P.; Alberto, A.; Urread, G.; Roose, N.; Hassellvd, M.;  Tollefsena, K.E.V.; Thomasa, K. (2009). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology; 96: 44-52.

Federici, G.; Shaw, B.J.;  Handy,  R.D. (2007). Toxicity  of titanium  dioxide  nanoparticles  to  rainbow  trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and  other  physiological  effects,  AquatToxicol; 84: 415-430

Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.; Zhang, S.; Yang, X. (2007). Preparation and antibacterial activity of Fe3 O4-Ag nanoparticles. Nanotechnology; 18: 604-611.

Gopalakannan, A.; Arul, V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture; 255: 179-187.

Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.C.; Barber, D.S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms, Environmental Toxicology and Chemistry; 27(9): 1972-1978.

Hogstrand, C.; Wood, C.M. (1998). Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: Implications for water quality criteria. Environmental Toxicology and Chemistry; 17 (4): 547-561.

Holt, K.B.; Bard, A.J. (2005). Interaction of silver (I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag (2005) Biochemistry; 44 (39): 13214-13223.

Iwama, G.; Nakanishi, T. (1996). The fish immune system. Academic Press, London. Chapter 3: innate Immunity in fish, pp: 73-114.

Kajita, Y.; Sakai, M.; Atsuta, S.; Kobayash, M. (1990). The immunonodulatory effects of levamisole on rainbow trout, (Oncorhynchus mykiss). Fish Pathol; 25: 93-98.

Kaneko, J.J. (1989). Clinical Biochemistry of Domestic Animals. Fourth edition. Academic press, Inc.

Karthikeyeni, S.; Vijayakumar, T.S.; Vasanth, S.; Ganesh, A.; et  al. (2013). Biosynthesis of Iron oxidenanoparticles and its haematological effects on freshwater fish Oreochromis mossambicus, J.  Acad. Indus. Res.;  1(10): 645-649.

Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.I.; Kim, S.H.; Park, S.J.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. (2007). Antimicrobial effects of silver nanopaticles. Nanomedicine; Nanotechnology. Biology, and Medicine; 3, 95-101.

Lansdown, A.B. (2002) Silver 1. Its antibacterial properties and mechanism of action. Journal of wound Care; 11, 125-130.

Mohammadi, A. (2011). Effects of exposure to diazinon on some hematological parameters and serum lysozyme activity benni (Barbus sharpeyi). Ph.D. thesis Faculty of Veterinary medicine  Shahid Chamran University, Ahvaz.

Mohapatra, B.C.; Rengarajan, K. (1995). A Manual of Bioassays in the Laboratory and Their Techniques. CMFRI Special Publication, 64, CMFRI, Cochin, India, p. 75.

Peralta, J.R.; Zhaoa, L.; Lopez, M.M. (2010). Nanomaterials andtheenviron ment: Areview for the biennium 2008-2010, Journal of Hazardous Materials, under publish.

Raa, J.; Roerstad, G.; Engstad, R.; Robetsen, B. (1992). The use of immune stimulants to increase resistance of aquatic organisms to microbial infections. Aquacult; 1: 39-50.

Rai, M.; Yadav, A.; Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances; 27: 76-83.

Shahbazzadeh, D.A.; Ahari, H.B.; Rahimi, N.M.; Dastmalchi, F.; Soltani, M. (2009). The effects of Nanosilver on survival percentage of rainbow trout, Pakestan Journal of Nutrition; 8(8): 1178-1180.

Sharma, V.K.; Yngard, R.A.; Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities, Advances in Colloid and Interface Science; 145; 83-96.

Thrall, M.A. (2004). Veterinary Hematology and Clinical Chemistry. Lippincott Williams & Wilkins, USA, pp: 241, 277-288, 402.