بررسی نقش گیرنده ارکسین 1 هسته دمی عصب سه قلو بر بروز درد دهانی- صورتی ناشی از کاپسایسین و بیان c-fos در موش‌های صحرایی نر بالغ

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار، گروه زیست‌شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان، کرمان، ایران.

2 استاد، گروه زیست‌شناسی، دانشکده علوم، واحد علوم و تحقیقات فارس، دانشگاه آزاد اسلامی، فارس، ایران و گروه زیست‌شناسی، دانشکده علوم، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.

3 دانشیار، مرکز علوم و اعصاب دانشکده نوروفارماکولوژی، دانشگاه علوم پزشکی کرمان، کرمان، ایران و گروه اندودنتیکس، دانشکده دندانپزشکی، دانشگاه علوم پزشکی کرمان، کرمان، ایران. .

چکیده

چکیده

ارکسین­ A و ارکسین B­، نوروپپتیدهای هیپوتالاموسی می­باشند که نقش مهمی در تنظیم پاسخ­های فیزیولوژیک از جمله درد دارند. c-fos یکی از شاخص­های فعالیت نورونی در شرایط بروز درد می­باشد. پژوهش حاضر به منظور بررسی نقش گیرنده ارکسین 1 هسته دمی عصب سه قلو در بروز درد دهانی صورتی ناشی از کپسایسین و بیان c-fos در این ناحیه طراحی شد. در این مطالعه تجربی از 70 سر موش صحرایی نر نژاد ویستار، در محدوده وزنی 250 – 200 گرم استفاده شد، که به طور تصادفی در 10 گروه 7 تایی شامل: کنترل­، درد، شم جراحی، شم کاپسایسین، جراحی و درد، شم ارکسین A و درد­، ارکسین A (pM/rat 50) و درد­، شم ­SB-334867­ و درد، ­SB-334867 (nM/rat 40) به عنوان آنتاگونیست و درد و گروه دریافت‌کننده ارکسین A و ­SB-334867 به صورت توام و درد، قرار گرفتند. پس از کانول­گذاری و دوره بهبودی، تزریق داروها و 20 دقیقه بعد تزریق کاپسایسین صورت پذیرفت. میزان بیان c-fos با روش ایمونوهیستوشیمی در هسته دمی عصب سه قلو ارزیابی شد. نتایج حاصل نشان داد که تزریق کاپسایسین به صورت معنی­داری موجب افزایش پاسخهای درد و افزایش بیان c-fos می­گردد (001/0p

کلیدواژه‌ها


REFERENCES

 

Amirkhosravi, L.; Raoof M.; Raoof, R.; Abbasnejad, M.; Esmaeili Mahani, S.; Ramazani, M.; (2014). Is inflammatory pulpal pain a risk factor for amnesia? Iranian Journal of Veterinary Science and Technology (IJVS); 6: 62-76.

Azhdari Zarmehri, H.; Semnanian, S.; Fathollahi, Y.; (2008). Comparing the analgesic effects of periaqueductal gray matter injection of orexin A and morphine on formalin-induced nociceptive behaviors. Physiol Pharmacol; 12:­188-193. (in Persian)

Bahaaddini, M.; Khatamsaz, S.; Esmaeili-Mahani, S.; Abbasnejad, M.; Raoof, M. (2016). The role of trigeminal nucleus caudalis orexin 1 receptor in orofacial pain-induced anxiety in rat. Neuroreport; 19; 27(15):1107-13.

Balam, T.A.; Yamashiro, T.; Zheng, L.; Murshid, A.S.; Fujiyoshi, Y.; Takano-Yamamoto, T.; (2005). Experimental tooth movement upregulates preproenkephalin mRNA in the rat trigeminal nucleus caudalis and oralis. Brain Res; 1036:196-201.

Bartsch, T.; Levy, M.J.; Knight, Y.E., Goadsby, P.J.; (2004). Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain; 109(3):367-378.

Berridge, C.W.; Espana, R.A.; Vittoz, N.M.; (2010). Hypocretin/Orexin in arousal and stress. Brain Res; 1314:91-102.

Bingham, S.; Davey, P.T.; Babbs, A.J., Irving, E.A.; Sammons, M.J.; Wyles, M.; (2001). Orexin A, hypothalamic peptide with analgesic properties. Pain; 92: 81-90.

Chamani Gelyan, S.; (2014). Evaluation of Apelin Receptor Gene Expression by MCF-7 Breast Cancer Cell Line and Breast Cancer. Thesis. Shahid Bahonar University of Kerman.

Chidiac, J.J.; Rifai, K.; Hawwa, N.N.; Massaad, C.A.; Jurjus, A.R.; Jabbur, S.J.; et al.; (2002). Nociceptive behaviour induced by dental application of irritants to rat incisors: A new model for tooth inflammatory pain. Eur. J. Pain; 6: 55-67.

Chidiac, J.J.; Al-Asmar, B.; Rifai, K.; Jabbur, S.J.; Saade, N.E.; (2009). Inflammatory mediators released following application of irritants on the rat injured incisors, the effect of treatment with anti-inflammatory drugs. Cytokine; 46:­ 194-200.

Ciriello, J.; de, Oliveira, C.V.; (2003). Cardiac effects of hypocretin-1 in nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol; 284:R1611-1620.

Coggeshall, R.E.; (2005). Fos, nociception and the dorsal horn. Prog Neurobiol; 77(5): 299-352.

Gomes, M.C.; Pinto-Sarmento, T.C.; Costa, E.M.; Martins, C.C.; Granville-Garcia, A.F.L.; Paiva, S.M.; (2014). Impact of oral health conditions on the quality of life of preschool children and their families: A cross-sectional study. J Health Quality Life Outcomes; 12(1): 55.

Harris, J.A.; (1998). Using c-fos as a neural marker of pain. Brain Res Bull; 45(1): 1-8.

Hayati, A.; Ismail, A; Ismail, Z.; (2002). C-fos and its Consequences in Pain. Malays J Med Sci. Jan; 9(1): 3-8.

Holland, P.R.; Akerman, S.; Goadsby, P.J.; (2005). Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. The Journal of Pharmacology and Experimental Therapeutics; 315(3): 1380-1385.

Kooshki, R.; Abbasnejad, M.; Esmaeili-Mahani, S.; Raoof, M.; (2016). The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats. Physiology & Behavior; 157: 20-27.

Korotkova, T.M.; Eriksson, K.S.; Haas, H.L.; Brown, R.E.; (2002). Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regul Pept; 104: 83-89.

Kramer, P.F.; Feldens, C.A.; Ferreira, S.H.; Bervian, J.; Rodrigues, P.H.; Peres, M.A.; (2013). Exploring the impact of oral diseases and disorders on quality of life of preschool children. J Community Dent Oral Epidemiol; 41(4): 235-7.

Krishnan, V.; (2007). Orthodontic pain: from causes to management–a review. Eur J Orthod; 29: 170-179.

Maixner, W.; Diatchenko, L.; Dubner, R.; Fillingim, RB.; Greenspan, JD.; Knott, C. et al.; (2011). Orofacial pain prospective evaluation and risk assessment study the OPPERA study. J Pain; 12(11): 4-11.

Mobarakeh, J.I.; Takahashi, K.; Sakurada, S.; Nishino, S.; Watanabe, H.; Kato, M.; Yanai, K.; (2005). Enhanced antinociception by intracerebroven-tricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides; 26: 767-777.

Munglani, R.; Hunt, S.P.; (1995). Molecular biology of pain. Br. J. Anaes; 75:­ 186­-­192.

Paxinos, G.; Watson, C.A.; (1998). Stereotaxic Atlas of the Rat Brain, Academic, New York.

Pellow, S.; Chopin, P.; File, S.E.; Briley, M.; (1985). Validation of open: closed arm entries in an elevated plus- maze as a measure of anxiety in the rat. Journal of Neuroscience Methods; 14(3): 149-167.

Raoof, M.; Ebrahimnejad, H.; Abbasnejad, M.; Amirkhosravi, L.; Raoof, R.; Ramazani, M.; (2016). The effects of inflammatory tooth pain on anxiety in adult male rats. Basic and Clinical Neuroscience; accepted.

Sadeghi, S.; Raeisi, Z.; Azhdari-Zarmehri, H.; Haghparast, A.; (2013). Involvement of orexin-1 receptors in the ventral tegmental area and the nucleus accumbens in antinociception induced by lateral hypothalamus stimulation in rats. Pharmacol Biochem Behav; 105: 193-198.

Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, RM.; Tanaka, H.; (1998). Orexin and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell; 92: 573-585.

Schellinck, H.M.; Stanford, L.; Darrah, M.; (2003). Repetitive acute pain in infancy increases anxiety but does not alter spatial learning ability in juvenile mice. Behav Brain Res; 142(1-2):157-65.

Sessle, B.J.; (2000). Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Critical Reviews in Oral Biology & Medicine; 11: 57.

Siqueira-Lima, P.S.; Silva, J.C.; Quintans, J.S.S.; Antoniolli, A.R.; Shanmugam, S.; Barreto, RSS. et al.; (2017). Natural products assessed in animal models for orofacial pain-a systematic review. Revista Brasileira de Farmacognosia; 27: 124-134.

Smith, M.A.; Banerjee, S.; Glowa, J.; (1992). Induction of c-fos mRNA in rat brain by conditioned and unconditioned stressors. Brain Res; 578: 135-141.

Supronsinchai, W.; Storer, R.J.; (2015). C-Fos: A neural activity marker for craniofacial pain research. CU Dent J; 38: 77-92.

Tamaddonfard, E.; Erfanparast, A.; Khalilzadeh, E.; (2012). Effect of pilocarpine on the formalin-induced orofacial pain in rats. Veterinary Research Forum; 3(2): 91-95.         

Tarsa, L.; Balkowiec-Iskra, E.; kratochvil, Lii, F.J.; Jenkis, V.K.; Mclean, A.; Brown, A.L.; (2010). Tooth plup inflammation increases brain-derived neurotrophic factor expression in rodent trigeminal ganglion neurons. Neuroscience; 167: 1205-1215.

Van Den Pol, A.N.; (1999). Hypothalamic hypocretin (orexin): robust innervations of the spinal cord. J Neurosci; 19: 3171.

Watanabe, S.; Kuwaki, T.; Yanagisawa, M.; Fukuda, Y.; Shimoyama, M.; (2005). Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport; 16(1): 5-8.

Wong, H.M.; McGrath, C.P.; King, N.M,; Lo, E.C.; (2011). Oral health-related quality of life in Hong Kong preschool children. Caries Res; 45(4): 370-6.

Yamaguchi, M.; Kojima, T.; Kanekawa, M.; Aihara, N.; Nogimura, A.; Kasai, K., (2004). Neuropeptides stimulate production of interleukin-i beta, interleukin-6, and tumor necrosis factor-a in human dental pulp cells. Inflamm Res; 53: 199-­204.

Yamamoto, T.; Saito, O.; Shono, K.; Hirasawa, S.; (2003). Activation of spinal orexin- 1receptor produces anti-allodynic effect in the rat carrageenan test. Eur J Pharmacol; 481: 175.