استفاده از نانو رشته‌های آمیلوئیدی به‌عنوان یک بستر پروتئینی برای تثبیت آنزیم لیپاز باکتری سودوموناس سپاسیا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

2 مربی، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

3 استاد، گروه زیست شناسی، دانشگاه پیام نور، تهران، ایران

چکیده

چکیده
آمیلوئیدها در ­شرایط غیرطبیعی­کننده از پروتئین­های مختلف به­ وجود می­آیند. سطح بسیار فعال، این مواد را به­عنوان بستری برای تثبیت آنزیم مناسب می­سازد. هدف از ­این مطالعه تولید رشته­های آمیلوئیدی و بررسی امکان استفاده از آن­ها به­عنوان بستر برای تثبیت آنزیم بوده است. برای تولید حداکثر میزان آمیلوئید از روش پاسخ سطح1 استفاده شد و نتایج طیف­ سنجی کنگورد و دورنگ­نمایی دورانی2 با نرم­افزار Design Expert 7 (Trial version) تحلیل شد و از میکروسکوپ الکترونی گذاره برای تایید حضور رشته­های آمیلوئیدی استفاده گردید. فرایند تثبیت با گلوتارالدهید و با ایجاد پل­عرضی بین آنزیم و رشته­های آمیلوئیدی انجام شد و فاکتور­های سینتیکی در آنزیم آزاد و تثبیت­شده شامل فعالیت، فعایت ویژه، دما و pH بهینه و پایداری حرارتی باهم مقایسه شدند. بیش­ترین میزان آمیلوئید پس از 6/72 ساعت به­هم زدن آلبومین سرم گاوی با غلظت 35/4 میلی­گرم بر میلی­لیتر در بافر میکس سیترات-فسفات با 49/4=pH و دمای 80 درجه به­دست آمد و لیپاز تثبیت­شده در فعالیت، فعالیت ویژه، Km و Vmax، دما و pH بهینه و پایداری حرارتی در دمای 40 درجه نسبت به لیپاز آزاد برتری سینتیکی نشان داد. رشته­های آمیلوئیدی به­عنوان موادی غنی از گروه­های شیمیایی، می­توانند برای تثبیت آنزیم­ها مناسب باشند. این زمینه پروتئینی می‌تواند کاندیدای مناسبی در شرایط inVivo به­عنوان بستری زیست­سازگار در تثبیت آنزیم­ها باشد. آمیلوئیدها با قطر کمتر از 100 نانومتر به­عنوان نانو مواد جدید، نه­تنها باعث افزایش پایداری لیپاز می­شوند، بلکه سایر خواص سینتیکی آن را به­عنوان یک نانو-ماتریکس جدید تقویت می‌کنند.

کلیدواژه‌ها


Arasteh, A.; Habibi-Rezaei, M.; Ebrahim-Habibi, A.; Moosavi-Movahedi, A. A.; (2012). Response surface methodology for optimizing the bovine serum albumin fibrillation. The Protein Journal; 31(6): 457-465.

Arosio, P.; Knowles, T. P.; Linse, S.; (2015). On the lag phase in amyloid fibril formation. Physical Chemistry Chemical Physics; 17(12): 7606-7618.

Borrelli, G.M.; Trono, D.; (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences 16(9): 20774-20840.

Cao, S.-L.; Huang, Y.-M.; Li, X.-H.; Xu, P.; Wu, H.; Li, N.; Lou, W.-Y.; Zong, M.-H.; (2016). Preparation and characterization of immobilized lipase from Pseudomonas cepacia onto magnetic cellulose nanocrystals. Scientific Reports; 6: 20420.

Chan, H.-M.; Xiao, L.; Yeung, K.-M.; Ho, S.-L.; Zhao, D.; Chan, W.-H.; Li, H.-W.; (2012). Effect of surface-functionalized nanoparticles on the elongation phase of beta-amyloid (1–40) fibrillogenesis. Biomaterials; 33(18): 4443-4450.

Clark, T. B.; Ziółkowski, M.; Schatz, G. C.; Goodson III, T.; (2014). Two-photon and time-resolved fluorescence spectroscopy as probes for structural determination in amyloid-β peptides and aggregates. The Journal of Physical Chemistry B; 118(9): 2351-2359.

Dumri, K.; Hung Anh, D.; (2014). Immobilization of lipase on silver nanoparticles via adhesive polydopamine for biodiesel production. Enzyme Research; 14-20.

Fukuda, H.; Kondo, A.; Noda, H.; (2001). Biodiesel fuel production by transesterification of oils. Journal of bioscience and bioengineering 92(5): 405-416.

Guit, R.; Kloosterman, M.; Meindersma, G.; Mayer, M.; Meijer, E.; (1991). Lipase kinetics: Hydrolysis of triacetin by lipase from Candida cylindracea in a hollow‐fiber membrane reactor. Biotechnology and Bioengineering; 38(7): 727-732.

Hadizadeh, S. N.; Ranjbar, B.; Khajeh, K.; (2013). Isolation of Pseudomonas Aeruginosa Hr59 Lipase From Burn Infection and Optimization of Medium by Use of Box-Behnken Design (BBD); 26(2) 229-241.

Holm, N.K.; Jespersen, S.K.; Thomassen, L.V.; Wolff, T.Y.; Sehgal, P.; Thomsen, L.A.; Christiansen, G.; Andersen, C.B.; Knudsen, A.D.; Otzen, D.E.; (2007). Aggregation and fibrillation of bovine serum albumin. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics; 1774(9): 1128-38.

Kim, D.-Y.; Shin, W.-S.; (2016). Functional improvements in bovine serum albumin–fucoidan conjugate through the Maillard reaction. Food Chemistry; 190: 974-981.

Kim, J., Jia, H.; Wang, P.; (2006). Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances; 24(3): 296-308.

Kumar, V., Yedavalli, P.; Gupta, V.; Rao, N. M.; (2014). Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Protein Engineering Design and Selection; 27(3): 73-82.

Lindberg, D.J.; Wranne, M.S.; Gatty, M.G.; Westerlund, F.; Esbjörner, E.K.; (2015). Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Aβ (1-40) and Aβ (1-42). Biochemical and Biophysical Research Communications 458(2): 418-423.

Luo, Q.; Hou, C.; Bai, Y.; Wang, R.; Liu, J.; (2016). Protein assembly: versatile approaches to construct highly ordered nanostructures. Chemical Reviews; 116(22): 13571-13632.

Maldonado, R.; Lopes, D.; Aguiar-Oliveira, E.; Kamimura, E.; Macedo, G.; (2017). A Review on Geotrichum Lipases: Production, Purification, Immobilization and Applications. Chemical and Biochemical Engineering Quarterly; 30(4): 439-454.

Maldonado, R.R.; Aguiar-Oliveira, E.; Fogaça, F.M.; Ramos, G.G.; Macedo, G.A.; Rodrigues, M.I.; (2015). Evaluation of partial purification and immobilization of lipase from Geotrichum candidum. Biocatalysis and Agricultural Biotechnology; 4(3): 321-326.

Milani, E.; Poorazarang, H.; Khah, S.; Vakilian, H.; (2010). Optimization of inulin extraction from Helianthus tuberosus using response surface methodology (RSM). Iranian Food Science & Technology Research Journal; 6(3): 176-183.

Millucci, L.; Raggiaschi, R.; Franceschini, D.; Terstappen, G.; Santucci, A.; (2009). Rapid aggregation and assembly in aqueous solution of Aβ (25–35) peptide. Journal of Biosciences; 34(2): 293-303.

Nickpour, M.; Pazouki, M.; (2014). Synthesis and characteristics of mesoporous sol-gels for lipase immobilization. Int J Eng; 27: 1495-1502.

Pilkington, S.M.; Roberts, S.J.; Meade, S.J.; Gerrard, J.A.; (2010). Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnology Progress; 26(1): 93-100.

Ray, A.; (2012). Application of lipase in industry. Asian Journal of Pharmacy and Technology; 2(2): 33-37.

Ren, Y.; Rivera, J.G.; He, L.; Kulkarni, H.; Lee, D.-K.; Messersmith, P.B. (2011). Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology; 11(1): 63.

Sakai, S.; Liu, Y.; Yamaguchi, T.; Watanabe, R.; Kawabe, M.; Kawakami, K.; (2010). Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnology Letters; 32(8): 1059-1062.

Taha, M.; Quental, M.V.; Correia, I.; Freire, M.G.; Coutinhom J.A.; (2015). Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids. Process Biochemistry; 50(7): 1158-1166.

Tokunaga, Y.; Matsumoto, M.; Sugimoto, Y.; (2015). Amyloid fibril formation from a 9 amino acid peptide, 55th–63rd residues of human lysozyme. International Journal of Biological Macromolecules; 80: 208-216.

Torres, M.D.P.G.; Foresti, M.L.; Ferreira, M.L.; (2013). Cross-linked enzyme aggregates (CLEAs) of selected lipases: a procedure for the proper calculation of their recovered activity. AMB Express; 3(1): 25.

Venkatesagowda, B.; Ponugupaty, E.; Barbosa, A.M.; Dekker, R.F.; (2012). Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World Journal of Microbiology and Biotechnology; 28(1): 71-80.

Wang, W.; Nema, S.; Teagarden, D.; (2010). Protein aggregation-Pathways and influencing factors. International Journal of Pharmaceutics; 390(2): 89-99.

Zare Baghi Abad, V.; Tabatabai Yazdi, F.; Mortazavi, S.; Varidi, M.; (2016). Isolation and identification of lipolytic yeasts from sesame meal of Yazd province and determination the potential of lipase production by them. Journal of Food Science & Technology; (2008-8787) 13(51).

Zhao, Z.Y.; Liu, J.; Hahn, M.; Qiao, S.; Middelberg, A.P.; He, L.; (2013). Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability. RSC Advances; 3(44): 22008-22013.