القای فیبریل‌زایی در سرم آلبومین گاوی و تولید رشته‌های آمیلوئیدی به منظور استفاده از آنها به‌عنوان نانو ماده زیستی جدید

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه زیست‌شناسی، دانشگاه آزاد اسلامی، واحد رشت، رشت، ایران

2 مربی، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

3 استاد، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

4 . استاد، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

چکیده


رشته­های آمیلوئیدی دسته­ای از نانو رشته­های پروتئینی هستند که در آن پروتئین طبیعی به رشته­های متراکم تبدیل شده­اند. تجمع می­تواند بیماریزا و یا غیر­بیماریزا باشد. اخیرا این رشته­ها با توجه به ساختار منحصر به فردی که دارند، برای تولید نانومواد زیستی مورد توجه قرار گرفته­اند. در این مطالعه از آلبومین سرم گاوی به‌عنوان یک پروتئین مدل برای بهینه‌سازی فرایند فیبریل زایی استفاده شد. غلظت­های 2-10 میلی‌گرم بر میلی­لیتر در بافر با pHهای مختلف 3-7 تهیه­شده و برای دوره‌های صفر تا 48 ساعت در دمای 30-70 درجه سانتی­گراد قرار گرفتند و میزان تولید رشته­های آمیلوئیدی با روش اسپکتروفوتومتری، فلوریمتری و دورنگ نمایی دورانی بررسی شد. طیف­های حاصل از روش جذب­سنجی کنگورد بر اساس میزان طول موج ماکزیمم و جذب در طول موج ماکزیمم با نمونه حاوی رنگ کنگورد مقایسه شد. غلظت 10 میلی­گرم بر میلی­لیتر از پروتئین که برای 48 ساعت در بافر با 4pH= و در دمای 50 درجه سانتی­گراد قرار داشتند، بیشترین میزان آمیلوئید را تولید کردند. شرایط بهینه با روش فلورسانس ThT و دورنگ نمایی در غلظت 10 میلی‌گرم بر میلی‌لیتر، 4pH=، دمای 70 درجه سانتی‌گراد و زمان 48 ساعت به­دست آمد. حضور رشته­ها با تصاویر میکرسکوپ الکترونی گذاره تأیید شد. ساختار نامحلول و ابعاد رشته­های آمیلوئیدی آنها را به‌عنوان نانو مواد زیستی جدید معرفی می­کند. بهینه‌سازی تولید این ساختارها، مجال تولید آنها را در مقیاس­های بالاتر فراهم می­آورد.

کلیدواژه‌ها


Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.; (2002). Molecular biology of the cell. New York: Garland Science.

Arasteh, A.; Habibi-Rezaei, M.; Ebrahim-Habibi, A.; Moosavi-Movahedi, A.A.; (2012). Response surface methodology for optimizing the bovine serum albumin fibrillation. The Protein Journal; 31(6): 457-65.

Carrió, M.; González-Montalbán, N.; Vera, A.; Villaverde, A.; Ventura, S.; (2005). Amyloid-like properties of bacterial inclusion bodies. J Mol Biol; 347: 1025-37.

Chi, E.Y.; Krishnan, S.; Randolph, T.W.; Carpenter, J.F.; (2003). Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharmaceutical research; 20(9): 1325-36.

Chiti, F.; Dobson, C.M.; (2006). Protein Misfolding, Functional Amyloid, and Human Disease. Annu Rev Biochem; 75: 333-66.

Chiti, F.; Dobson, C.M.; (2006). Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem; 75: 333-66.

Dirix, C.; Duvetter, T.; Loey, A.V.; Hendrickx, M.; Heremans, K.; (2005). The in situ observation of the temperature and pressure stability of recombinant Aspergillus aculeatus pectin methylesterase with Fourier transform IR spectroscopy reveals an unusual pressure stability of beta-helices. The Biochemical Journal; 392(Pt 3): 565-71.

Dobson, C.; (2003). Protein folding and misfolding. Nature; 426(6968): 884-90.

Dobson, C.; (2006). Protein aggregation and its consequences for human disease. Protein Pept Lett; 13(3): 219-27.

Dobson, C.M.; (2006). Protein aggregation and its consequences for human disease. Protein Pept Lett; 13(3): 219-27.

Eichner, T.; Radford, S.E.; (2011). A diversity of assembly mechanisms of a generic amyloid fold. Molecular Cell; 43(1): 8-18.

Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A.; (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of controlled release: official journal of the Controlled Release Society; 157(2): 168-82.

Fink, A.L.; (1998). Protein aggregation: folding aggregates, inclusion bodies and amyloid. Folding and Design; 3(1): R9-R23.

Finke, J.M.; Roy, M.; Zimm, B.H.; Jennings, P.A.; (2000). Aggregation events occur prior to stable intermediate formation during refolding of interleukin 1. Biochemistry; 39(3): 575-83.

Fukuma, T.; Mostaert, A.; Jarvis, S.; (2006). Explanation for the mechanical strength of amyloid fibrils. Tribology Letters; 22(3): 233-7.

Ganesh, C.; Zaid, F.N.; Udgaonkar, J.B.; Varadarajan, R.; (2001). Reversible formation of on-pathway macroscopic aggregates during the folding of maltose binding protein. Protein Science; 10: 1635-44.

Garvey, M.; Gras, S.; Meehan, S.; Meade, S.; Carver, J.; Gerrard, J.; (2009). Protein nanofibres of defined morphology prepared from mixtures of crude crystallins. Int J Nanotechnol; 6: 258-2783.

Gelamo, E.; Tabak, M.; (2000). Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta A Mol Biomol Spectrosc; 56(11): 2255-71.

Georgiou, G.; Valax, P.; Ostermeier, M.; Horowitz, P.M.; (1994). Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein science: a publication of the Protein Society; 3(11): 1953.

Giger, K.; Vanam, R.P., Seyrek, E.; Dubin, P.L.; (2008). Suppression of insulin aggregation by heparin. Biomacromolecules; 9(9): 2338-44.

Gras, S.L.; (2007). Amyloid Fibrils: From Disease to Design. New Biomaterial Applications for Self-Assembling Cross-β Fibrils. Applied chemistry; 5.

Gsponer, J.; Vendruscolo, M.; (2006). Theoretical approaches to protein aggregation. Protein and Peptide Letters; 13(3): 287-93.

Hamada, D.; Yanagihara, I.; Tsumoto, K.; (2004). Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotechnol; 22(2): 93-7.

Holm, N.; Jespersen, S.; Thomassen, L.; Wolff, T.; Sehgal, P.; Thomsen, L.; et al.; (2007). Aggregation and fibrillation of bovine serum albumin. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics; 1774(9): 1128-38.

Honda, C.; Kamizono, H.; Samejima, T.; Endo, K.; (2000). Studies on Thermal Aggregation of Bovine Serum Albumin as a Drug Carrier. Chem Pharm Bull; 48(4): 464-6.

Jayawardena, N.; Kaur, M.; Nair, S.; Malmstrom, J.; Goldstone, D.; Negron, L.; et al.; (2017). Amyloid Fibrils from Hemoglobin. Biomolecules; 7(2): 37.

Jeyashekar, N.S.; Sadana, A.; Vo-Dinh, T.; (2005). Protein amyloidose misfolding: mechanisms, detection, and pathological implications. Methods Mol Biol; 300: 417-35.

Juarez, J.; Taboada, P.; Mosquera, V.; (2009). Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Biophysical Journal; 96(6): 2353-70.

Knowles, T.P.; Fitzpatrick, A.W.; Meehan, S.; Mott, H.R.; Vendruscolo, M.; Dobson, C.M.; et al.; (2007). Role of intermolecular forces in defining material properties of protein nanofibrils. Science; 318(5858): 1900-3.

Kouchakzadeh, H.; Safavi, M.S.; Shojaosadati, S.A.; (2015). Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Advances in protein chemistry and structural biology; 98: 121-43.

Kratz, F.; (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of controlled release: official journal of the Controlled Release Society; 132(3): 171-83.

Lashuel, H.A.; Lansbury, P.T.; (2006). Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Quarterly Reviews of Biophysics; 39(02): 167-201.

Lashuel, H.A.; Lansbury, P.T.; (2006). Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Quarterly Reviews of Biophysics; 39(02): 167.

Lorenzo, A.; Yankner, B.A.; (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl AcadSci USA; 91(25): 12243-7.

Lorenzo, A.; Yankner, B.A.; (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proceedings of the National Academy of Sciences; 91(25): 12243-7.

MacPhee, C.E.; Woolfson, D.N.; (2004). Engineered and designed peptide-based fibrous biomaterials. Current Opinion in Solid State and Materials Science; 8(2): 141-9.

Militello, V.; Casarino, C.; Emanuele, A.; Giostra, A.; Pullara, F.; Leone, M.; (2004). Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophysical Chemistry; 107(2): 175-87.

Pilkington, S.M.; Roberts, S.J.; Meade, S.J.; Gerrard, J.A.; (2010). Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnology Progress; 26(1): 93-100.

Scheibel, T.; Parthasarathy, R.; Sawicki, G.; Lin, X.M.; Jaeger, H.; Lindquist, S.L.; (2003). Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A; 100(8): 4527-32.

Sethi, A.; Sher, M.; Akram, M.; Karim, S.; Khiljee, S.; Sajjad, A.; et al.; (2013). AlbuminLasa drug delivery and diagnostic tool and its market approved products. ActaPoloniaePharmaceutica ñ Drug Research; 70(4): 597-600.

Smith, J.; Knowles, T.; Dobson, C.; Macphee, C.; Welland, M.; (2006). Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA; 103(43): 15806-11.

Speed, M.A.; King, J.; Wang, D.I.C.; (1997). Polymerization mechanism of polypeptide chain aggregation. Biotechnology and Bioengineering; 54(4): 333-43.

Taboada, P.; Barbosa, S.; Castro, E.; Mosquera, V.; (2006). Amyloid fibril formation and other aggregate species formed by human serum albumin association. The Journal of Physical Chemistry B.; 110(42): 20733-6.

Teschke, C.M.; (1999). Aggregation and assembly of phage P22 temperature-sensitive coat protein mutants in vitro mimic the in vivo phenotype. Biochemistry; 38(10): 2873-81.

Uversky, V.N.; Segel, D.J.; Doniach, S.; Fink, A.L.; (1998). Association-induced folding of globular proteins. Proc Natl Acad Sci USA; 95: 5480-3.

Vermeer, A.W.P.; Norde, W.; (2000). The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophysical Journal; 78(1): 394-404.

Waterhouse, S.; Gerrard, J.; (2004). Amyluid Fibrilis in bionanotechnology. Current Chmistrey; 57: 519-23.