پیشرفت‌های اخیر در سلول درمانی ضایعات نخاعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیوشیمی، دانشگاه پیام نور مرکز تهران و پژوهشگر پژوهشکده سلول‌های بنیادی، پژوهشگاه رویان

2 دانشجوی دکتری زیست‌شناسی تکوینی، دانشگاه علم و فرهنگ و پژوهشگر پژوهشکده سلول‌های بنیادی، پژوهشگاه رویان

3 استادیار، فیزیولوژی جانوری، عضو هیات علمی پژوهشکده سلول‌های بنیادی، پژوهشگاه رویان

4 استاد، عضو هیات علمی، دانشگاه پیام نور مرکز تهران شرق

چکیده

ضایعه نخاعی شرایط تخریبی‏ای است که هزینه‏های زیادی را بر بیمار و جامعه او تحمیل می‏کند و متأسفانه تاکنون هیچ درمان مؤثری برای بیماری‏های سیستم عصبی و بالاخص ضایعات نخاعی ارائه نشده است. پیوند سلول‏های بنیادی یک استراتژی امیدوارکننده است که البته هنوز در ابتدای راه بوده و آزمایشات و کارآزمائی‏های بالینی بسیاری قبل از رسیدن آن به کلینیک باید به انجام و تایید مجامع پزشکی برسد. تحقیقات در زمینه بیولوژی سلول‏های بنیادی و باز برنامه نویسی سلول‏ها به‏سرعت در حال پیشرفت بوده و امید دست یابی به درمان کلینیکی پیوند سلولی را در بین بیماران مبتلا به این ضایعه افزایش می‏دهد. در این مطالعه، اپیدمیولوژی ضایعه نخاعی، پاتوفیزیولوژی و آزمایشات و کارآزمایی‏های بالینی انجام شده را مورد بحث و بررسی قرار خواهیم داد. همچنین مطالعه معضلات موجود برای استفاده کلینیکی از استراتژی پیوند سلولی و پیشرفت‏های اخیر در  زمینه استفاده از سلول‏های بنیادی جنینی انسانی برای پیوند به افراد مبتلا به ضایعه نخاعی از مباحث ارائه شده در مقاله حاضر می‏باشد.
 

کلیدواژه‌ها


Ackery, A.; Tator, C.; Krassioukov, A.; (2004). A global perspective on spinal cord injury epidemiology. J Neurotrauma; 21(10): 1355-1370.##Anwar, M.A.; Al Shehabi, T.S.; Eid; A.H.; (2016). "Inflammogenesis of Secondary Spinal Cord Injury". Front Cell Neurosci; 10: 98-105.##Arthur, A.; Shi, S.; Zannettino, A.C.; Fujii, N.; Gronthos, S.; Koblar, S.A.; (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells; 27(9): 2229-2237.##Ben-David, U.; Benvenisty, N.; (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer; 11(4): 268-277.##Biernaskie, J.; Sparling, J.S.; Liu, J.; Shannon, C.P.; Plemel, J.R.; Xie, Y.; Miller, F.D.; Tetzlaff, W.; (2007). "Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury". J Neurosci; 27(36): 9545-9559.##Borlongan, C.V.; Glover, L.E.; Tajiri, N.; Kaneko, Y.; Freeman, T.B.; (2011).  The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol; 95(2): 213-228.##Brustle, O.; Jones, K.N.; Learish, R.D.; Karram, K.; Choudhary, K.; Wiestler, O.D.; Duncan, I.D.; McKay, R.D.; (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science; 285 (5428): 754-756.##Callera, F.; do Nascimento, R.X.; (2006). Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol; 34(2): 130-131.##Carpenter, M.K.; Inokuma, M.S.; Denham, J.; Mujtaba, T.; Chiu, C.P. Rao, M.S.; (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol; 172(2): 383-397.##CH, T.; (1995). Epidemiology and general characteristics of the spinal cord injury patient. In: Benzel EC, ed. Contemporary Management of Spinal Cord Injury. Park Ridge, Illinois, USA: American Association of Neurological Surgeons; 9-13.##Chen, J.; Tang, Y.X.; Liu, Y.M.; Hu, X.Q.; Liu, N.; Wang, S.X.; Zhang, Y.; Zeng, W.G.; Ni, H.J.; Zhao, B.; Chen, Y.F.; Tang, Z.P.; (2012) Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther; 18(10): 847-854.##Connick, P.; Kolappan, M.; Crawley, C.; Webber, D.J.; Patani, R.; Michell, A.W.; Du, M.Q.; Luan, S.L.; Altmann, D.R.; Thompson, A.J.; Compston, A.; Scott, M.A.; Miller, D.H.; Chandran, S.; (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol; 11(2): 150-156.##Efe, J.A.; Hilcove, S.; Kim, J.; Zhou, H.; Ouyang, K.; Wang, G.; Chen, J.; Ding, S.; (2010). "Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy". Nat Cell Biol; 13(3): 215-222.##Enzmann, G.U.; Benton, R.L.; Talbott, J.F.; Cao, Q.; Whittemore, S.R.; (2006). Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma; 23(3-4): 479-495.##Evans, M.J.; Kaufman, M.H.; (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature; 292(5819): 154-156.##Fawcett, J.W.; Asher, R.A.; (1999). The glial scar and central nervous system repair. Brain Res Bull; 49(6): 377-391.##Fehlings, M.G.; Vawda, R.; (2011) Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics; 8(4): 704-720.##Fink, K.L.; Cafferty, W.B.; (2016). Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury. Neurotherapeutics; 13(2): 370-381.##Fujimoto, Y.; Abematsu, M.; Falk, A.; Tsujimura, K.; Sanosaka, T.; Juliandi, B.; Semi, K.; Namihira, M.; Komiya, S.; Smith, A.; Nakashima, K.; (2012) Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells; 30(6): 1163-1173.##Geffner, L.F.; Santacruz, M.; Izurieta, M.; Flor, L.; Maldonado, B.; Auad, A. H.; Montenegro, X.; Gonzalez, R.; and Silva. F.; (2008)."Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies". Cell Transplant; 17(12): 1277-1293.##Gomez-Barrena, E.; Rosset, P.; Muller, I.; Giordano, R.; Bunu, C.; Layrolle, P.; Konttinen, Y.T.;and Luyten, F.P.; (2011). "Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology." J Cell Mol Med; 15(6): 1266-1286.##Hawryluk, G.W.; Mothe, A.J.; Chamankhah, M.; Wang, J.; Tator, C.; and Fehlings, M.G.;(2012)."In vitro characterization of trophic factor expression in neural precursor cells." Stem Cells Dev; 21(3): 432-447.##Hofstetter, C. P.; Holmstrom, N.A.; Lilja, J.A.; Schweinhardt, P.; Hao, J.; Spenger, C.; Wiesenfeld-Hallin, Z.; Kurpad, S.N.; Frisen, J.; and Olson. L; (2005)."Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome." Nat Neurosci; 8(3): 346-353.##Hulsebosch, C.E.; (2002). "Recent advances in pathophysiology and treatment of spinal cord injury." Adv Physiol Educ; 26(1-4): 238-255.##Javadi, M.; Hafezi-Nejad, N.; Vaccaro, A.R.; and Rahimi-Movaghar. V.; (2014). "Medical complications and patient outcomes in Iranian veterans with spinal cord injury." Adv Clin Exp Med; 23(2): 269-275.##Kang, J.H.; Lee, C.K.; Kim, J.R.; Yu, S.J.; Jo, J.H.; Do, B.R.; Kim, H.K.; and Kang, S.G.;(2007). "Estrogen stimulates the neuronal differentiation of human umbilical cord blood mesenchymal stem cells (CD34-)." Neuroreport; 18(1): 35-38.##Kanno, H.; (2013). "Regenerative therapy for neuronal diseases with transplantation of somatic stem cells." World J Stem Cells; 5(4): 163-171.##Keirstead, H. S.; Nistor, G.; Bernal, G.; Totoiu, M,; Cloutier, F,; Sharp, K.; and Steward. O,; (2005). "Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury." J Neurosci; 25(19): 4694-4705.##Khazaei, M.; Siddiqui, A.M.; and Fehlings, M.G.; (2014). "The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges." J Clin Med; 4(1): 37-65.##Krejci, E.; and Grim, M.; (2010). "Isolation and characterization of neural crest stem cells from adult human hair follicles." Folia Biol (Praha); 56(4): 149-157.##Lee, S. T.; Chu, K.;  Jung, K.H.; Im, W.S.; Park, J.E.; Lim, H.C.; Won,C.H.; Shin, S.H.; Lee, S.K.; Kim, M.; and Roh, J.K.; (2009). "Slowed progression in models of Huntington disease by adipose stem cell transplantation." Ann Neurol; 66(5): 671-681.##Lujan, E.; Chanda, S.; Ahlenius, H.; Sudhof, T.C.; and Wernig, M.; (2012). "Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells." Proc Natl Acad Sci USA; 109(7): 2527-2532.##Mariano, E.D.; Batista, C.M.; Barbosa, B.J.; Marie, S.K.; Teixeira, M.J.;  Morgalla, M.; Tatagiba, M.; Li, J.; and Lepski, G.; (2014). "Current perspectives in stem cell therapy for spinal cord repair in humans: a review of work from the past 10 years." Arq Neuropsiquiatr; 72(6): 451-456.##Marro, S.; Pang, Z.P.; Yang, N.; Tsai, M.C.; Qu, K.; Chang, H.Y.; Sudhof, T.C.; and M. Wernig.;(2011). "Direct lineage conversion of terminally differentiated hepatocytes to functional neurons." Cell Stem Cell; 9(4): 374-382.##Martini, M.; Jeremias, S.; Tda, S.; Kohler, M.C.; Marostica, L.L.; Trentin, A.G.; and Alvarez-Silva, M.; (2013). "Human placenta-derived mesenchymal stem cells acquire neural phenotype under the appropriate niche conditions." DNA Cell Biol; 32(2): 58-65.##McDonald, J.W.; Liu, X.Z.; Qu, Y.; Liu, S.; Mickey, S.K.; Turetsky, D.; Gottlieb, D.I.; and Choi. D.W.; (1999). "Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord." Nat Med; 5(12): 1410-1412.##Moreno-Manzano, V.; Rodriguez-Jimenez, F.J.; Garcia-Rosello, M.; Lainez, S.; Erceg, S.; Calvo, M.T.; Ronaghi, M.; Lloret, M.; Planells-Cases, R.; Sanchez-Puelles, J.M.; and Stojkovic, M.; (2009). "Activated spinal cord ependymal stem cells rescue neurological function." Stem Cells; 27(3): 733-743.##Morshead, C. M.; Reynolds, B.A.; Craig, C.J.; McBurney, M.W.; Staines, W.A.; Morassutti, D.; Weiss, S.; and Van der Kooy, D.; (1994). "Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells." Neuron; 13(5): 1071-1082.##Mothe, A. J.; and Tator, C.H.; (2012). "Advances in stem cell therapy for spinal cord injury." J Clin Invest; 122(11): 3824-3834.##Nistor, G. I.; Totoiu, M.O.; Haque, N.; Carpenter, M.K.; and Keirstead, H.S.; (2005). "Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation." Glia; 49(3): 385-396.##Ostenfeld, T.; Joly, E.; Tai, Y.T.; Peters, A.; Caldwell, M.; Jauniaux, E.; and Svendsen, C.N.;(2002). "Regional specification of rodent and human neurospheres." Brain Res Dev Brain Res; 134(1-2): 43-55.##Park, J. H.; Kim, D.Y.; Sung, I.Y.; Choi, G.H.; Jeon, M.H.; Kim, K.K.; and Jeon, S.R.; (2012). "Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans." Neurosurgery; 70(5): 1238-1247; discussion 1247.##Piao, J. H.; Odeberg, J.; Samuelsson, E.B.; Kjaeldgaard, A.; Falci, S.;  Seiger, A.; Sundstrom, E.; and Akesson, E.; (2006). "Cellular composition of long-term human spinal cord- and forebrain-derived neurosphere cultures." J Neurosci Res; 84(3): 471-482.##Ra, J. C.; Shin, I.S.; Kim, S.H.;  Kang, S.K.; Kang, B.C.; Lee, H.Y.; Kim, Y.J.;  Jo, J.Y.; Yoon, E.J.; Choi, H.J.; and Kwon, E.; (2011). "Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans." Stem Cells Dev; 20(8): 1297-1308.##Reubinoff, B.E.; Itsykson, P.; Turetsky, T.; Pera, M.F.; Reinhartz, E.; Itzik, A.; and Ben-Hur, T.; (2001). "Neural progenitors from human embryonic stem cells." Nat Biotechnol; 19(12): 1134-1140.##Sahni, V.; and Kessler, J.A.; (2010) "Stem cell therapies for spinal cord injury." Nat Rev Neurol; 6(7): 363-372.##Sharp, J.; Frame, J.; Siegenthaler, M.; Nistor, G.; and Keirstead, H.S.; (2010). "Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury." Stem Cells; 28(1): 152-163.##Sykova, E.; Homola, A.; Mazanec, R.; Lachmann, H.; Konradova, S.L.; Kobylka, P.; Padr, R.; Neuwirth, J.; Komrska, V.; Vavra, V.; Stulik, J.; and Bojar, M.; (2006). "Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury." Cell Transplant; 15(8-9): 675-687.##Szabo, E.S.; Rampalli, R.M.; Risueno, A.; Schnerch, R.; Mitchell, A.; Fiebig-Comyn, M.; Levadoux-Martin, M.; Bhatia, (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature; 468(7323): 521-526.##Tator, C.P.P.; (2009). Acute clip impact-compression model. In: Chen J, Xu ZC, Xiao-Ming X, Zhang JH, eds. Animal Models of Acute Neurological Injuries. York, New York, USA: Humana Press; 449-460.##Tator, C.H.; (1995). "Update on the pathophysiology and pathology of acute spinal cord injury." Brain Pathol; 5(4): 407-413.##Tator, C.H.; (2006). "Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations." Neurosurgery; 59(5): 957-982; discussion 982-957.##Tator, C. H.; and Fehlings, M.G.; (1991). "Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms." J Neurosurg; 75(1): 15-26.##Tetzlaff, W.; Okon, E.B.; Karimi-Abdolrezaee, S.; Hill, C.E.; J. Sparling, J.S.; Plemel, J.R.; Plunet, W.T.; Tsai, E.C.; Baptiste, D.; Smithson, L.J.; Kawaja, M.D.; Fehlings, M.G.; and Kwon, B.K.; (2011). "A systematic review of cellular transplantation therapies for spinal cord injury." J Neurotrauma; 28(8): 1611-1682.##Thomas, K.E.; and Moon, L.D.; (2011). "Will stem cell therapies be safe and effective for treating spinal cord injuries?" Br Med Bull; 98: 127-142.##Thuret, S.; Moon, L.D.; and Gage, F.H.; (2006). "Therapeutic interventions after spinal cord injury." Nat Rev Neurosci; 7(8): 628-643.##Tropepe, V.; Hitoshi, S.; Sirard, C.; Mak, T.W.; Rossant, J.; and Van der Kooy, D.; (2001). "Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism." Neuron; 30(1): 65-78.##Tsuji, O.; Miura, K.; Okada, Y.; Fujiyoshi, K.; Mukaino, M.; Nagoshi, N.; Kitamura, K.; Kumagai, G.; Nishino, M.; Tomisato, S.; Higashi, H.; Nagai, T.; Katoh, H.; Kohda, K.; Matsuzaki, Y.; Yuzaki, M.; Ikeda, E.; Toyama, Y.; Nakamura, M.; Yamanaka,S.; and Okano, H.; (2010)."Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury." Proc Natl Acad Sci USA; 107(28): 12704-12709.##Wada, T.; Honda, M.; Minami, H.; Tooi, N.;  Amagai, Y.; Nakatsuji, N.; and Aiba, K.; (2009)."Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells." PLoS One; 4(8): e6722.##Wang, T.T.; Tio, M.; Lee, W.; Beerheide, W.; and Udolph, G.; (2007). "Neural differentiation of mesenchymal-like stem cells from cord blood is mediated by PKA." Biochem Biophys Res Commun; 357(4): 1021-1027.##Wichterle, H.; Lieberam, I.; Porter, J.A.; and Jessell, T.M.; (2002). "Directed differentiation of embryonic stem cells into motor neurons." Cell; 110(3): 385-397.##Wright, K. T.; Masri, W.; Osman, A.; Chowdhury, J.; and Johnson, W.E.; (2011)."Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications." Stem Cells; 29(2): 169-178.##Yan, J.; Welsh, A.M.; Bora, S.H.;  Snyder, E.Y.; and Koliatsos, V.E.; (2004). "Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord." J Comp Neurol; 480(1): 101-114.##Yoon, S. H.; Shim, Y.S.; Park, Y.H.; Chung, J.K.; Nam, J.H.; Kim, M.O.; Park, H.C.; Park, S.R.; Min, B.H.; Kim, E.Y.; Choi,  B.H.; Park, H.; (2007). "Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial." Stem Cells; 25(8): 2066-2073.##Zhang, S. C.; Wernig, M.;  Duncan, I.D.; Brustle, O.; and Thomson, J.A.; (2001). "In vitro differentiation of transplantable neural precursors from human embryonic stem cells." Nat Biotechnol; 19(12): 1129-1133.##Zhao, Y.; Glesne, D.; and Huberman, E.; (2003). "A human peripheral blood monocyte-derived subset acts as pluripotent stem cells." Proc Natl Acad Sci USA; 100(5): 2426-2431.##