با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

چکیده

گزارش­های اخیر نشان داده­اند که برخی از ایزوفلاون­های گیاهی دارای اثرات سودمندی بر دیابت و سلامتی کبد در انسان و حیوانات آزمایشگاهی هستند. هدف از این تحقیق، تجویز عصاره آبی-الکلی شبدر قرمز به­عنوان یک گیاه سرشار از ترکیبات ایزوفلاونی و اثرات آن بر سطوح سرمی قند و آنزیم­های کبدی آسپارتات ترانس آمیناز (AST)، آلانین آمینوترانسفراز (ALT) و آلکالین فسفاتاز (ALP) در موش­های سوری نر بود. در این مطالعه تجربی، تعداد 42 سر موش سوری نر به 6 گروه 7 تایی شامل گروه‏‌‏های کنترل سالم، دیابتی شده بدون درمان (کنترل مثبت)، دیابتی شده تحت درمان با گلی­بنکلامید و سه گروه دیابتی تحت درمان با عصاره آبی-الکلی شبدر قرمز به­ترتیب با دوزهای 250، 500 و 750 میلی­گرم بر کیلوگرم از راه گاواژ برای مدت 15 روز طبقه­بندی شدند. دیابت با تزریق داخل صفاقی mg/kg60 استرپتوزوتوسین انجام شد. در روز آخر سطوح سرمی گلوکز، و آنزیم­های AST، ALT و ALP اندازه­گیری شد. داده­ها با استفاده از نرم­افزار SPSSو آنالیز واریانس یک طرفه در سطح معناداری 05/0>p تجزیه و تحلیل شدند. دوزهای mg/kg500  و mg/kg750 عصاره به­طور معناداری (001/0>p) قند خون را در مقایسه با گروه کنترل مثبت کاهش دادند. در بررسی آنزیم­های کبدی، سطح  ASTدر گروه mg/kg750 (001/0>p)،  سطح ALT در گروه‏‌‏های mg/kg500  (01/0>p) و mg/kg750 (001/0>p) و سطح ALP در گروه‏‌‏های mg/kg250 (05/0>p)، mg/kg500 (001/0>p) و mg/kg750 (001/0>p) در مقایسه با گروه کنترل مثبت کاهش یافت. این مطالعه نشان داد مصرف عصاره آبی-الکلی گیاه شبدر قرمز علاوه بر اثرات ضد­دیابتی، دارای اثرات حفاظت کبدی نیز می­باشد.

کلیدواژه‌ها

Ae Park, S.; Choi, M.S.; Cho, S.Y.; Seo, J.S.; Jung, U.J.; Kim, M.J.; et al. (2006). Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci; 79(12): 1207-13.
Androli, T.; Carpenter, C.; Griggs, R.; Benjamin, I. (2007). Diseases of the Liver and Biliary System. in: Cecil's Essentials of Medicine. 7th ed. USA: WB Saunders Company.
Azad Bakht, M. (2006). Phytoestrogens. Journal of Medical Plants; 6(21): 1–10.
Azizi, R.; Goodarzi, M.T.; Salemi, Z. (2014). Protective effect of biochanin A on the hepatic and renal function of diabetic rats. Daneshvar Medicine; 21(109): 7-16.
Bhathena, S.J.; Velasquez, M.T. (2002). Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr; 76: 1191-1201.
Bindu, J.; Narendhirakannan, R.T.  (2019). Role of medicinal plants in the management of diabetes mellitus: a review. Biotech; 9(1): 4.
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; et al. (2017). Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol (Lausanne); 8: 6.
Choi, M.S.; Jung, U.J.; Yeo, J.; Kim, M.J.; Lee, M.K. (2008). Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab Res Rev; 24(1): 74-81.
Fu, Z.; Gilbert, E.R.; Pfeiffer, L.; Zhang, Y.; Fu, Y.; Liu, D. (2012). Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl Physiol Nutr Metab; 37(3): 480-8.
Gautam, J.; Khedgikar, V.; Kushwaha, P.; Choudhary, D.; Nagar, G.K.; Dev, K.; et al. (2017). Formononetin, an isoflavone, activates AMP-activated protein kinase/β-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss. Br J Nutr; 117(5): 645-61.
Hagh-Nazari, L.; Goodarzi, N.; Zangeneh, M.M.; Zamgeneh, A.; Tahvilin, R.; Moradi, R. (2017). Stereological study of kidney in streptozotocin-induced diabetic mice treated with ethanolic extract of Stevia rebaudiana (bitter fraction). Comp Clin Pathol; 26: 455-63.
Howes, J.B.; Tran, D.; Brillante, D.; Howes, L.G. (2003). Effects of dietary supplementation with isoflavones from red clover on ambulatory blood pressure and endothelial function in postmenopausal type 2 diabetes. Diabetes Obes Metab; 5(5): 325-32.
Jamali, R.; Jamali, A. (2010). Non-alcoholic fatty liver disease. Feyz, Journal of Kashan University of Medical Sciences; 14(2): 169-81.
Jayagopal, V.; Albertazzi, P.; Kilpatrick, E.S.; et al. (2002). Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care; 25: 1709-14.
Karale, S.; Kamath, J.V. (2017). Effect of daidzein on cisplatin-induced hematotoxicity and hepatotoxicity in experimental rats. Indian J Pharmacol; 49(1): 49-54.
Khazaei M, Pazhouhi M. Protective effect of hydroalcoholic extracts of Trifolium pratense L. on pancreatic β cell line (RIN-5F) against cytotoxicty of streptozotocin. Res Pharm Sci. 2018; 13(4): 324-31.
Kim, W.; Flamm, S.; Bisceglie, A.D.; Bodenheimer, H. (2008). Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology; 47(4): 1363-70.
Kooti, M.; Farokhipour, M.;  Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. (2016). The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician; 8(1): 1832-42.
Kota, BP.; Huang, T.H.; Roufogalis, B.D. (2005). An overview on biological mechanisms of PPARs. Pharmacol Res; 51: 85-94.
Kuzu, N.; Metin, K.; Dagli, A.F.; Akdemir, F.; Orhan, C.; Yalniz, M.; et al. (2007) Protective role of genistein in acute liver damage induced by carbon tetrachloride. Mediators Inflamm; 2007:36381.
Lee, JS. (2006). Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocininduced diabetic rats. Life Sci; 79: 1578-1584.
Li, Z.; Hong, K.; Saltsman, P.; et al. (2005). Long-term efficacy of soy-based meal replacements vs an individualized diet plan in obese type II DM patients: relative effects on weight loss, metabolic parameters, and C-reactive protein. Eur J Clin Nutr; 59: 411-418.
Loguercio, C.; Federico, A. (2003). Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med; 34(1): 1-10.
Mezei, O.; Banz, W.J.; Steger, R.W.; Peluso, M.R.; Winters, T.A.; Shay, N. (2003). Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr; 133: 1238-1243.
Mueller, M.; Hobiger, S.; Jungbauer, A. (2010). Red clover extract: a source for substances that activate peroxisome proliferator-activated receptor alpha and ameliorate the cytokine secretion profile of lipopolysaccharide-stimulated macrophages. Menopause; 17: 379-387.
Pandey, K.B.; Rizvi, S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev; 2: 270-278.
Qiu, L.; Chen, T.; Zhong, F.; Hong, Y.; Chen, L.; Ye, H. (2012). Red clover extract exerts antidiabetic and hypolipidemic effects in db/db mice. Exp Ther Med; 4(4): 699-704.
Qiu, L.; Lin, B.; Lin, Z.; Lin, Y.; Lin, M.; Yang, X. (2012). Biochanin A ameliorates the cytokine secretion profile of lipopolysaccharidestimulated macrophages by a PPARγ-dependent pathway. Mol Med Report; 5: 217-22.
Rabiei, Z.; Movahedi, E.; Rafieian-Kopaei, M.; Lorigooini, Z. (2018). Antidepressant effects of Trifolium pratense hydroalcholic extract in miceIr J Physiol Pharmacol; 2(1): 33-24.
Rahmatullah, M.; Azam, M.N.; Khatun, Z.; Seraj, S.; Islam, F.; Rahman, M.A. et al. (2012). Medicinal plants used for treatment of diabetes by the Marakh sect of the Garo tribe living in Mymensingh district, Bangladesh. Afr J Tradit Complement Altern Med; 9(3): 380-5.
Romeo, S.; Sentinelli, F.; Dash, S.; Yeo, G.; Savage, D.; Leonetti, F.; et al. (2010). Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent. International journal of obesity; 34(1): 190-4.
Sabudak, T.; Guler, N. (2009). Trifolium L. a review on its phytochemical and pharmacological profile. Phytother Res; 23(3): 439-46.
Salahshoor, M.R.; Roshankhah, S.; Hosseni, P.; Jalili, C. (2018). Genistein Improves Liver Damage in Male Mice Exposed to Morphine. Chin Med J (Engl); 131(13): 1598-04.
Shen, P.; Liu, M.H.; Ng, T.Y.; Chan, Y.H.; Yong, E.L. (2006). Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro. J Nutr; 136: 899-905.
Sonksen, P.; Sonksen, J.; (2000). Insulin: understanding its action in health and disease. Brit J Anaesth; 85(1): 69-79.
Tundis, R.; Marrelli, M.; Conforti, F.; Concetta Tenuta, M.; Bonesi, M.; Menichini, F.; et al. (2015). Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients. Foods; 4(3): 338-48.
Usui, T. (2006). Pharmaceutical prospects of phytoestrogens. Endocr J; 53: 7-20.
Watjen, W.; Michels, G.; Steffan, B.; Niering, P.; Chovolou, Y.; Kampkotter, A.; et al. (2005). Low concentrations of flavonoids is protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. The Journal of Nutrition; 135(3): 525-31.
Zangeneh, M.M.; Goodarzi, N.; Zangeneh, A. (2018). Evaluation of Antidiabtic and hepatoprotective effects of aquatic extract of Stevia rebaudiana leaves (sweet fraction) in streptozotocin-induced diabetic mice. J Shahid Sadoughi Uni Med Sci; 26(4): 319-29.
Zhao, J.; Yue, W.; Zhu, M.J.; et al. (2010). AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun; 395: 146–51.
Zhao, J.X.; Yue, W.F.; Zhu, M.J.; et al. (2011). AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem; 286: 16426-434.