با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه زیست‌شناسی، دانشگاه آزاد اسلامی، واحد رشت، رشت، ایران

2 دانشجوی دکتری، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

3 استاد، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایر

4 استاد، گروه زیست‌شناسی، دانشگاه پیام نور، تهران، ایران

چکیده


آنزیم اوره­آز (EC.3.5.1.5) از دسته هیدرولاز­ها است که هیدرولیز اوره را به آمونیاک و دی اکسیدکربن کاتالیز می­کند. این آنزیم کاربردهای مختلفی در متابولیسم نیتروژن، تهیه واکسن، کیت­های تشخیص اوره، صنایع نوشابه­سازی و غیره دارد. در این تحقیق از نانورشته­های آمیلوئیدی حاصل از آلبومین سرم گاوی به­عنوان بستری جدید برای تثبیت آنزیم اوره­آز استفاده شد. تولید نانو رشته‌های آمیلوئیدی با سه تکنیک طیف­سنجی کنگورد، اسپکتروفلوریمتری و اسپکتروپلاریمتری بهینه­سازی شده و رشته‌های حاصله با تصاویر میکروسکوپ الکترونی مورد تأیید قرار گرفتند. سپس آنزیم اوره­آز با استفاده از مولکول­های گلوتارآلدهید و با ایجاد پل­های عرضی روی رشته­های آمیلوئیدی تثبیت‌شده و فاکتورهای سینتیکی آن با آنزیم آزاد مقایسه شدند. بیشترین میزان تولید رشته­های آمیلوئیدی پس از 48 ساعت انکوباسیون آلبومین سرم گاوی با غلظت 10 میلی­گرم بر میلی­لیتر و دمای 70 درجه سانتی‌گراد در بافر سیترات-فسفات با pH برابر 4 به­دست آمد. آنزیم تثبیت­شده نسبت به شکل آزاد دارای قابلیت نگه­داری و پایداری بیشتری بود و فعالیت ویژه بالاتر و نیز Km کوچکتری را نشان داد. دمای بهینه از 40 به 70 درجه سانتی­گراد و pH بهینه نیز از 6 تا 7 به 6 تا 9 در آنزیم تثبیت­شده بهبود یافت. بنابراین رشته‌های آمیلوئیدی با داشتن گروه­های شیمیایی مختلف، برای تثبیت آنزیم اوره­آز مناسب بوده­اند. بهبود ویژگی‌های سینتیکی و پایداری آنزیم اوره­آز در اثر تثبیت بر رشته­های آمیلوئیدی امکان استفاده گسترده­تر از این آنزیم را در صنایع مرتبط فراهم می­آورد.
 

کلیدواژه‌ها

Ali, S.M.U., et al.; (2011). Selective determination of urea using urease immobilized on ZnO nanowires. Sensors and Actuators B: Chemical; 160(1): 637-643.
Andrews, R. K., et al.; (1986). Jack Bean Urease (EC3.5.1.5). 8. On the Inhibition of Urease by Amides and Esters of Phosphoric Acid. Journal of the American Chemical Society 108: 7124-7125.
Andrews, R. K., et al.; (1986). Jack bean urease (EC 3.5. 1.5) VIII. On the inhibition of urease by amides and esters of phosphoric acid. Journal of the American Chemical Society; 108(22): 7124-7125.
Blakeley, R. L.; Zerner, B.; (1984). Jack Bean Urease: The First Nickel Enzyme. Journal of Molecular Catalysis; 23: 263-292.
Carballo, M., et al.; (1992). Evaluation of a urease-based confirmatory enzyme-linked immunosorbent assay for diagnosis of Neisseria gonorrhoeae. Clin Microbiology 30: 2181-2183.
Cherny, I.; Gazit, E.; (2008). Amyloids: not only pathological agents but also ordered nanomaterials. Angewandte Chemie International Edition; 47(22): 4062-4069.
 Chiti, F.; Dobson, C. M.; (2006). Protein Misfolding, Functional Amyloid, and Human Disease. Annu Rev Biochem 75: 333-366.
Danial, E. N., et al.; (2015). Characteristics of Immobilized Urease on Grafted Alginate Bead Systems. Brazilian Archives of Biology and Technology; 58(2): 147-153.
Dixon, N. E., et al.; (1975). Jack bean urease (EC 3.5.1.5), A metalloenzyme, A simplebiological role for nickel? J Am Chem Soc 97: 4131-4133.
Fidaleo, M., et al.; (2006). Assessment of Urea Degradation Rate in Model Wine Solutions by Acid Urease from Lactobacillus fermentum. J. Agric Food Chem; 54: 6226-6235.
Follmer, C.; (2008). Insights into the role and structure of plant ureases. Phytochemistry; 69(1): 18-28.
Gebbink, M. F., et al.; (2005). Amyloids-a functional coat for microorganisms. Nature Reviews Microbiology; 3(4): 333-341.
Gras, S. L.; (2007). Amyloid Fibrils: From Disease to Design. New Biomaterial Applications for Self-Assembling Cross-β Fibrils. Applied chemistry: 5.
Gurung, N., et al.; (2013). A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int; 2013: 329121.
Holm, N., et al.; (2007). Aggregation and fibrillation of bovine serum albumin. Biochimica et Biophysica Acta (BBA)-Proteins&Proteomics;1774(9):1128-1138.
Huntington, G.; (1986). Uptake and transport of nonprotein nitrogen by the ruminant gut. Fed Proc; 45: 2272-2276.
Jayawardena, N., et al.; (2017). Amyloid Fibrils from Hemoglobin. Biomolecules; 7(2): 37.
Khan, M., et al.; (2013). Kinetics and thermodynamic study of urease extracted from soybeans. Biologia; 59(1): 7-14.
Kim, J., et al.; (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science; 61(3): 1017-1026.
Lee, C., et al.; (2017). Improving the Stability of Cold-Adapted Enzymes by Immobilization. Catalysts; 7(4): 112.
Liversidge, G., et al.; (2011). Altering the Tumor Microenvironment. Drug Dev Deliv; 11: 68-72.
Luo, Z.; Fu, X.; (2010). Immobilization of urease on dialdehyde porous starch. Starch‐Stärke; 62(12): 652-657.
Mankar, S., et al.; (2011). Nanomaterials: amyloids reflect their brighter side. Nano Rev; 2.
Masuda, Y., et al.; (2014). Improvement of thermal-stability of enzyme immobilized onto mesoporous zirconia. Journal of Asian Ceramic Societies; 2(1): 11-19.
Mobley, H. L. T., et al.; (1995). Molecular Biology of Microbial Ureases. Microbiological Reviews; 59(3): 451-481.
Mohamad, N. R., et al.; (2015). An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip; 29(2): 205-220.
Mulinari, F., et al.; (2011). Characterization of JBURE-IIb isoform of Canavalia ensiformis (L.) DC urease. Biochim Biophys Acta; 1814(12): 1758-1768.
Pilkington, S. M., et al.; (2010). Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnology Progress; 26(1): 93-100.
Pithawala, K., et al.; (2010). Immobilization of urease in alginate, paraffin and lac. Journal of the Serbian Chemical Society; 75(2): 175-183.
Robinson, P. K.; (2015). Enzymes: principles and biotechnological applications. Essays In Biochemistry 59: 1-41.
Sheldon, R.; (2007). Cross-linked enzyme aggregates, stable and recyclable biocatalysts, Portland Press Limited.
Sheldon, R. A.; van Pelt, S.; (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev.; 42(15): 6223-6235.
Smith, P. T., et al.; (1993). Isolation and characterization of urease from Aspergillus niger. Journal of General Microbiology; 5(139): 597-562.
Sujoy, B.; Aparna, A.; (2013). Potential clinical significance of urease enzyme. European Scientific Journal; 9(21):94-102.
Wang, X., et al.; (2008). The molecular basis of functional bacterial amyloid polymerization and nucleation. Journal of Biological Chemistry; 283(31): 21530-21539.
Wright, C. I., et al.; (2007). Herbal medicines as diuretics: a review of the scientific evidence. J Ethnopharmacol; 114(1): 1-3.