با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 . استادیار، گروه زیست شناسی دریا، دانشکده علوم و فنون دریایی و جوی، دانشگاه هرمزگان، بندرعباس، صندوق پستی 3559، ایران

2 استادیار فیزیک‌دریا، دانشکده علوم و فنون دریایی و جوی، دانشگاه هرمزگان، بندرعباس، صندوق پستی 3559

چکیده


اورکین دریایی به عنوان فرسایشگر زیستی، از عوامل مؤثر در اکوسیستم آب‌سنگ‌های مرجانی است که مطالعه ریخت‌سنجی ظاهری توتیا و ارتباط آن با آرواره حائز اهمیت است. ازاین‌رو، اورکین دریایی Echinometra mathaei، در نواحی بین جزرومدی بندردیر (N̋̋57/03ʹ50˚27، E̋̋39/49ʹ53˚51) درفصل تابستان (تیر تا شهریور 1393) مورد بررسی قرار گرفت. 91 نمونه پس ازبرداشت از ساحل به طورزنده به آزمایشگاه انتقال داده شدند. وزن ترکل با ترازو و ارتفاع و قطر پوسته، طول آرواره باکولیس دیجیتالی سنجیده شد (دقت 01/0). سپس رابطه بین ارتفاع وقطر باوزن برحسب شاخص‌های محاسباتی، وارتباط بین آرواره، و ارتفاع و قطر به دست آمد.  نتایج نشان دادکه نسبت ارتفاع به قطر (شاخص HDR)، مستقل از قطر (شیب نزدیک به صفر) است و در نتیجه رابطه‌ای مستقیم بین ارتفاع و قطر پوسته برقرار است (47/0=a). با وجود آن‌که بلندترین ارتفاع و طول خار مربوط به جنس نر بود، اما به طور کلی جنس ماده مقادیر بیشتری از قطر، ارتفاع وضخامت پوسته رابه خود اختصاص می‌داد (متوسط ارتفاع، قطر و ضخامت پوسته درجنس ماده به ترتیب: mm52/3±13/24، و mm71/5±93/44، و mm16/0±83/0؛ ودرجنس نر به ترتیب: mm82/6±22/21، mm27/12±67/37 و m20/0±73/0 بود). نمونه‌های نابالغ، قطرهای پوسته‌ای کمتر از mm20 و وزن‌هایی کمتراز gr‌66/6 را دارا بودند که معیاری ازرسیدگی جنسی می‌تواند باشد. دوشاخص HWR و DWR، در جنس نر و ماده اختلاف چشم‌گیری با کل نمونه‌ها داشتند، که می‌تواند به جنسیت نابالغ ارتباط داده شود. همچنین طول آرواره نصف ارتفاع (49/0=a، 87/0=r) و تقریباً یک‌چهارم قطر(25/0=a، 89/0=r) به دست آمد. نتایج به‌خوبی نشان داد که نمونه‌های بزرگتر، آرواره‌های بلندتر دارند که می‌تواند در شناسایی نمونه‌هایی با فرسایش بیشتر مورد توجه قرار گیرد.

کلیدواژه‌ها

Amemiya, C.T.; Miyake, T.; Rast, J.P.; (2005). Echinoderms. Current Biology; 15(23): R944-R946.
Aslian, H.A.; (2014). Antibacterial activity of various extracts of the sea urchin Echinometra mathaei. University of Hormozgan. Bandar Abbas, Iran; 48-49.
Blainville, H.M.D.D.; (1825). Oursin, Echinus (Actinozoaires.). Pp. 59-98 in Dictionnaire des Sciences Naturelles F.G. Levrault, Strasbourg & Paris., available online at http://www.biodiversitylibrary.org/item/81570#page/5/mode/1up page(s): 94.
Bronstein, O.; Loya, Y.; (2014). Echinoid community structure and rates of herbivory and bioerosion on exposed and sheltered reefs. Journal of Experimental Marine Biology and Ecology; 456: 8-17.
Coppard, S.E.; Campbell, A.C.; (2006). Taxonomic significance of test morphology in the echinoid genera Diadema Gray, 1825 and Echinothrix Peters, 1853 (Echinodermata). Zoosystema; 28(1): 93-112.
Dafni, J.; (1980). Abnormal growth patterns in the sea urchin Tripneustes cf. gratilla (L.) under pollution (Echinodermata, Echinoidea). Journal of Experimental Marine Biology and Ecology; 47(3): 259-279.
Dumas, P.; Kulbicki, M.; Chifflet, S.; Fichez, R.; Ferraris, J. (2007). Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). Journal of Experimental Marine Biology and Ecology; 344(1): 88-100.
Ebert, T.A.; Hernández, J.C.; Clemente, S.; (2014). Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin. Proceedings of the Royal Society of London B: Biological Sciences; 281(1779): 20132284.
Elliott, L.; Russell, M.; Hernández, J.; (2012). Estimating Echinoid test volume from height and diameter measurements. In Johnson C. (ed) Proceedings of the Thirteenth  International Echinoderm Conference, University of Tasmania, Hobart Tasmania, 59 January 2009. Echinoderms in a Changing World. CRC Press, pp. 105-112.
Gambardella, C.; Aluigi, M.G.; Ferrando, S.; Gallus, L.; Ramoino, P.; Gatti, A.M.; Rottigni, M.; Falugi, C.; (2013). Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. Aquatic Toxicology; 130: 77-85.
Hagen, N.T.; (2008). Enlarged lantern size in similar-sized, sympatric, sibling species of Strongylocentrotid sea urchins: from phenotypic accommodation to functional adaptation for durophagy. Marine Biology; 153(5): 907-924.
Macfarlane, K..; (2007). Distribution of the benthic marine habitats in the northern region of the West Coast of Dominica. Institute of Tropical Marine Ecology Research: 20: 30-48.
Marin, A.; Montoya, S.; Vita R.; Marín-Guirao, L.; Lloret, J. Aguado, F.; (2007). Utility of sea urchin embryo-larval bioassays for assessing the environmental impact of marine fishcage farming. Aquaculture; 271(1), 286-297.
McCartney M.A.; Keller G.; Lessois H.A.; (2000). Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Molecular Ecology; 9: 1391-1400.
McClanahan, T.R.; Muthiga, N.A.; (2013). Echinometra. In: Lawrence J.M. (ed) Sea Urchin: Biology and Ecology. Florida, MA: Academic Press, pp. 337-353.
Meidel, S.; Scheibling, R.E.; (1999). Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Marine Biology; 134(1), 155-166.
Mohebbi, GH.; Vazirizadeh, A.; Nabipour I.; (2016). Sea urchin: toxinology, bioactive compounds and its treatment management. Iran South Medical Journal; 19(4): 704-735.
Mortensen, T.; (1943). A Monograph of the echinoidea III. 2: camarodonta. I. orthopsidae, glyphocyphidae, temnopleuridae and toxopneustidae text.
Padilla-Gamiño, J.L.; Kelly, M.W.; Evans, T.G.; Hofmann, G.E.; (2013). Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus. Proceedings of the Royal Society. Series B: Biological Sciences; 280: 20130155.
Pecorino, D.; Lamare, M.D.; Barker, M.F.; (2012). Growth, morphometrics and size structure of the Diadematidae sea urchin Centrostephanus rodgersii in northern New Zealand. Marine and Freshwater Research; 63(7): 624-634.
Pederson, H.G.; Johnson, C.R.; (2008). Growth and age structure of sea urchins (Heliocidaris erythrogramma) in complex barrens and native macroalgal beds in eastern Tasmania. ICES Journal of Marine Science: Journal du Conseil; 65(1): 1-11.
Rogers-Bennett, L.; Rogers, D.W.;  Bennett, W.A.;  Ebert, T.A.;  (2003). Modeling red sea urchin (Strongylocentrotus franciscanus) growth using six growth functions. Fishery Bulletin; 101: 614-626.
Sadripour, E.; Mortazavi, M.; Mahdavi Shahri, N.; (2013). Effects of mercury on embryonic development and larval growth of the sea urchin Echinometra mathaei from the Persian Gulf. Iranian Journal of Fisheries Sciences; 12(4), 898-907.
Siikavuopio, S.I.; (2009). Green sea urchin (Strongylocentrotus droebachiensis, Mülle) in aquaculture: the effects of environmental factors on gonad growth. Ph.D. thesis. University of Tromsø, Tromsø, Norway.
Zhao, C.; Zhang, W.; Chang, Y.; Liu, P.; (2010). Test and gonad characteristics in different genders of cultivated sea urchins (Strongylocentrotus intermedius, Agassiz): First insight into sexual identification, African Journal of Biotechnology; 9(44): 7560-7563.