با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه زابل

چکیده

چکیده
آلودگی یک مشکل جهانی با عواقب بسیار خطرناک است. فلزات سنگین یک گروه مهم از این آلاینده­ها هستند که در اثر فعالیت­های انسانی و منابع طبیعی وارد اکوسیستم­های آبی می­شوند و سلامت جانوران و سیستم را تحت تأثیر قرار می­دهند. در مطالعه حاضر به بررسی اثر غلظت تحت کشنده فلز سرب (30 روز تحت غلظت 3 میلی‎گرم بر لیتر) بر فعالیت آنزیم‎های استیل­کولین­استراز (AChE)، آلکالین­فسفاتاز (ALP)، آلانین­آمینوترانسفراز (ALT)، آسپارتات آمینوترانسفراز (AST) و لاکتات دهیدروژناز (LDH) در بافت مغز، آبشش، عضله و کبد ماهی سفیدک سیستان پرداخته شد. نتایج نشان داد سرب می­تواند فعالیت آنزیم استیل­کولین­استراز را در آبشش و مغز به طور معنی­داری نسبت به گروه شاهد مهار کند (05/0p˂). فعالیت آنزیم آلانین­آمینو­ترانسفراز در کبد و عضله به‎طور معنی­داری تحت تأثیر سرب افزایش یافت (05/0p˂). افزایش معنی‎دار فعالیت آنزیم آسپارتات آمینو­ترانسفراز در کبد و مغز مشاهده شد (05/0p˂). همچنین فعالیت آنزیم آلکالین فسفاتاز و لاکتات دهیدروژناز تنها در کبد ماهیان قرار گرفته در معرض سرب به طور معنی­داری افزایش نشان داد (05/0p˂). از این رو قرار گرفتن ماهی سفیدک در معرض سرب منجر به برهمکنش بین فلز و سیستم بیولوژیک ماهی سفیدک شد که نتیجه آن تغییر فعالیت آنزیم‎ها در بافت­های بدن ماهی بود. فعالیت آنزیم‎ها تحت تأثیر سرب از الگوی کاهشی و افزایشی یکسانی پیروی نکرده و بسته به نوع آنزیم و بافت نتایج متفاوتی مشاهده شد. بنابراین پایش پروفایل آنزیمی در بافت­های بدن ماهی سفیدک جهت تشخیص سلامتی این ماهی خوراکی و اندام­های معیوب به علت حضور سرب در محیط مفید می­باشد.

کلیدواژه‌ها

Abbas, H.H.; (2006). Acute toxicity of ammonia to common carp fingerling (Cyprinus carpio) at different pH levels. Pakistan journal of biological science; 9: 2215-2221.
Antognelli, C.; Romani, R.; Baldracchini, F.; De Santis, A.; Andreani, G.; Talesa, V.; (2003). Different activity of glyoxalase system enzymes in specimens of Sparus auratus exposed to sublethal copper concentrations. Chemico-Biological Interactions; 142: 297-305.
Atli, G.; Alptekin, O.; Tukel, S.; Canli, M.; (2006). Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology; 143: 218-224.
Bainy, A. C. D.; de Medeiros, M. H. G.; Mascio, P. D.; de Almeida, E. A.; (2006). In vivo effects of metals on the acetylcholinesteras e activity of the Perna perna mussel’s digestive gland. Biotemas; 19: 35-39.
Baghshani, H.; Shahsavani, D.; (2013). Effects of lead acetate exposure on metabolic enzyme
activities in selected tissues of common carp (Cyprinus carpio). Comparative Clinical Pathology; 22: 903-907.
Beninca, C.; Ramsdorf, W.; Vicari, T.; de OliveiraRibeiro, C.A.; de Almeida, M.Z.; Silva de Assis, H.C.; (2011) Chronic genetic damages in Geophagus brasiliensis exposed to anthropic impact in Estuarine Lakes at Santa Catarina Coast–Southern of Brazil. Environmental Monitoring and Assessment; 184(4): 2045-2056.  
Boge, G.; Leydet, M.; Houvet, D.; (1992). The effects of hexavalent chromium on the activity of alkaline phosphatase in the intestine of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology; 23: 247-260.
Brewer, S.K.; Little, E.E.; De Lonay, A.J.; Beauvais, S.L.; Jones, S.B.; Ellersieck, M.R.; (2001).Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorynchus mykiss) exposed to cholinesterase-inhibiting chemicals; 40: 70-76.
Corsi, I.; Bonacci, S.; Santovito, G.; Chiantore, M.; Castagnolo, L.; Focardi, S.; (2004). Cholinesterase activities in the Antarctic scallop Adamussium colbecki: tissue expression and effect of ZnCl2 exposure. Marine Environmental Research; 58: 401-406.
Cory-Slechta, D.; (1995). Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neurotransmitter system functions. Annual Review of Pharmacology and Toxicology; 35: 391-415.
Dai. W.; Fu. L.; Du, H.; Jin, C.; Xu, Z.; (2009). Changes in growth performance, metabolic enzyme activities, and content of Fe, Cu, and Zn in liver and kidney of Tilapia (Oreochromis niloticus) exposed to dietary Pb. Biological Trace Element Research;128: 176-183.
Das, P.C.; Ayyappan, S.; Das, B.K.; Jena, J.K.; (2004). Nitrite toxicity in Indian major carps: sublethal effect on selected enzymes in fingerlings of Catla catla, Labeo rohita and Cirrhinos mrigala. Comparative Biochemistry and Physiology; 138: 3-10.
De La Torre, F.R.; Salibian, A.; Ferrari, L.; (2000). Biomarkers assessment in juvenile Cyprinus carpio exposed to waterborne cadmium. Environmental Pollution; 109: 277-282.
De Lima, D.; Roque, G.M.; de Almeida, E.A.; (2013). In vitro and in vivo inhibition of  acetylcholinesterase and carboxylesterase by metals in zebrafish (Danio rerio). Marine Environmental Research; 91: 45-51.
Ellman, G.L.; Courtney, K.D.; Andres, V. J.; (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology; 7: 88-95.
Gabriel, U.U.; Akinrotimi, O.A.; Ariweriokuma, V.S.; (2012). Changes in metabolic enzymes activities in selected organs and tissue of Clarias gariepinus exposed to cypermethrin. Chemical Engineering; 1: 25-30.
Gagnon, A.; Jumarie. C.; Hontela, A.; (2006). Effects of Cu on plasma cortisol and cortisol secretion by adrenocortical cells of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology; 78: 59-65
Gill, T.S.; Tewari, H.; Pande, J.; (1990). Use of the fish enzyme system in monitoring water quality: effects of mercury on tissue enzymes. Comparative Biochemistry and Physiology; 97: 287-292.
Gill, T.S.; Tewari, H.; Pande, J.; (1991). In vivo and in vitro effects of cadmium on selected enzymes in different organs of the fish Barbus conchonius Ham. (rosy barb). Comparative Biochemistry and Physiology; 100: 501-505.
Gioda, C.R.; Loro, V.L.; Pretto, A.; Salbego, J.; Dressler, V.; Flores, E.M.M.; (2013). Sublethal Zinc and copper exposure affect acetyl cholinesterase activity and accumulation in different tissues of Leporinus obtusidens. Bulletin of Environmental Contamination and Toxicology; 90: 12-16.
Gonzalez de Canales, M.L.; Sarasquete, M.C.; (1990). Hydrolytic enzymes of the digestive tract in clams Ruditapes decussates and Ruditapes philippinarum. Scientia Marina; 54: 89-93.
Lin, L.; Yang, Y.J.; Yang, S.S.; Leu, M.L; (1997). Aluminium utensile contribute to aluminium accumulation in patients with renal disease. American Journal of  idney Diseases; 30: 653-658.
Molina, R.; Moreno, I.; Pichardo, S.; Jos, A.; Moyano, R.; Monterde, J.G.; Camean, A.; (2005). Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions. Toxicon; 46: 725-735.
Mudipali, A.; (2007). Lead hepatotoxicity and potential health effect. Indian Journal of Medical Research; 126: 518-527.
Moussa, S.A.; Bashandy, S.A.; (2008). Biophysical and biochemical changes in the blood of rats exposed to lead toxicity. Romanian Journal of Biophysics; 18: 123-133.
Najimi, S.; Bouhaimi, A.; Daubèze, M.; Zekhnini, A.; Pellerin, J.; Narbonne, J.F.; et al.; (1997). Use of acetylcholinesterase in Perna perna and Mytilus galloprovincialis as a biomarker of pollution in Agadir marine bay (South of Morocco). Bulletin of Environmental Contamination and Toxicology; 58: 901-908.
Neff, J.M.; (1985). Use of biochemical measurements to detect pollutantmediated damage to fish. In: Cardwell RD, Purdy R, Bahner RC (eds) Aquatic Toxicology and Hazard ssessment: Seventh Symposium, Philadelphia, pp 155–183.
Nemcsok, J.; Benedezky, I.; Borors, L.; Asztalos, B.; Orbain, L.; (1981). Subcellular localiza-tion of transamination enzymes in fishes and their significance in the detection of water pollution. Acta Biologica Szegediensis; 27: 9-15
Nunes, B.; (2011). The use of cholinesterases in ecotoxicology. Reviews Environmental Contamination and Toxicology; 212: 29-59.
Oner, M.; Atli, G.; Canli, M.; (2009). Effects of metal (Ag, Cd, Cr, Cu, Zn) exposures on some enzymatic and non-enzymatic indicators in the liver of Oreochromis niloticus. Bulletin of Environmental Contamination and Toxicology; 82: 317-321.
Rainbow, P.S.; (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution; 120: 497-507.
Rajaei, Q.; Jahantigh, H.; Mir, A.; Hesari Motlagh, S.; Hasanpour, M.; (2012). Evaluation of concentration of heavy metals in Chahnimeh water reservoirs of Sistan-va-Baloochestan. Mazandaran University Medicine Scince; 22: 105-112.
Richetti, S.K.; Rosemberg, D.B.; Ventura-Lima, J.; Monserrat, J.M.; Bogo, M.R.; Bonan, C.D.; (2011). Acetylcholinesterase activity and antioxidant capacity of zebrafish brain is altered by heavy metal exposure. Neuro Toxicology; 32: 116-122.
Romani, R.; Antognelli, C.; Baldracchini, F.; Santis, A.; Isani, G.; Giovannini, E.; Rosi, G.; (2003). Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublethal copper concentrations. Chemico-Biological Interactions; 145: 321-329.
Saenz, L.A.; Seibert, E.L.; Zanette, J.; Fiedler, H.D.; Curtius, A.J.; Ferreira, J.F.; (2010). Biochemical biomarkers and metals in Perna perna mussels from mariculture zones of Santa Catarina, Brazil. Ecotoxicology and environmental safety; 73: 796-804.
Shahsavani, D.; Mohri, M.; Kanani, H.G.; (2010). Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiology and Biochemistry; 36: 39-43.
Sant’Anna, M. C. B.; de Matas Soares, V.; Seibt, K.J.; Ghisleni, G.; Rico, P.E.; Rosemberg, B.D.; de Oliveira, J.R.; Schroder, N.; Bonan, C.D.; Bogo, R.M.; (2011). Iron exposure modifies acetylcholinesterase activity in zebrafish (Danio rerio) tissues: distinct susceptibility of tissues to iron overload. Fish Physiology Biochemistry; 37: 573-581.
Senger, M.R.; Seibt, K.J.; Ghisleni, G.C.; Dias, R.D.; Bogo, M.R.; Bonan, C.D.; (2011). Aluminum exposure alters behavioral parameters and increases acetylcholinesterase activity in zebrafish (Danio rerio) brain. Cell Biology and Toxicology; 27:199-205.
Toth L.; Juhasz, M.; Varga, T.; Csikkel-Szolnoki, A.; Nemcsok, J.; (1996). Some effects of CuSO4 on carp. Environmental Science and Health; 31: 627-635.
Velmurugan, B.; Selvanayagam, M.; Cengiz, E.I.; Uysal, E.; (2008). Levels of transaminases, alkaline phosphatase, and protein in tissues of Clarias gariepienus fingerlings exposed to sublethal concentrations of cadmium chloride. Environmental Toxicology; 23: 672-678.
Yildirim, M.Z.; Benli, K.C.; Selvi, M.; Ozkul, A.; Erko, F.; Kocak, O.; (2006). Acute toxicity behavioural changes and histopathological effects of deltamethrin on tissues (gills, liver, brain, spleen, kidney, muscle, skin) of Nile Tilapia (Oreochromis niloticus) fingerlings. Environmental Toxicology; 21: 614-620.