با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه گیلان

2 کارشناسی ارشد، گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه گیلان

3 استادیار، گروه زیست‌شناسی دریا، دانشکده علوم دریایی و اقیانوسی، دانشگاه مازندران

چکیده

فاکتورهای زیست محیطی از جمله شوری و دما می‎توانند بر فیزیولوژی و کارایی رشد در ماهی‎ها مؤثر باشند، از این‎رو ممکن است بسیاری از اندام‎های داخلی آنها از جمله آبشش دامنه وسیعی از تغییرات مورفولوژی و عملکرد را نشان دهد. بدین منظور بچه ماهیان به مدت 21 روز در گروه‎های دمایی 20، 25 و 30 درجه سانتیگراد در سه سطح شوری صفر، 5 و 10 ppt نگهداری شدند و تغییرات بافتی آبشش آنها مورد بررسی قرار گرفته است. نمونه‎برداری در روزهای 7 و 21 انجام شد، نمونه‎ها پس از بیومتری آبشش آنها جدا و در محلول بوئن به مدت 48-24 ساعت فیکس گردید. به منظور بررسی سلول‎های کلراید در بافت آبشش ماهی از رنگ آمیزی پاس– هماتوکسیلین (PAS) استفاده شد. نتایج نشان داد که تعداد و مساحت سلول‎های کلراید با بالا رفتن شوری و دما افزایش یافت و بیشترین تعداد و مساحت سلول‎های کلراید در دمای 30 درجه سانتی‎گراد و شوری ppt10 مشاهده شد. در مجموع می‎توان بیان کرد که تعداد و مساحت سلول‎های کلراید آبشش تحت تأثیر توام دو فاکتور محیطی شوری و دما قرار دارند.

کلیدواژه‌ها

Abdi, R.; Pourkhadje MR.; Zolgharnein H.; Hoseinzade SH.; Moroovati H.; (2011). Effect of salinity on mitochondria of chloride cells in gill of juvenile's grouper (Epinephelus coioides). J. Anim. Environ.; 2(4):37-42.##Albert, A.; Vetema, M.; Saat, T.; (2004). Effect of salinity on the development of Peipsi whitefish Coregonus lavaretus maraenoides Poljakow embryos. Ann. Zool. Fennici; 41: 85-88.##Altinok, I.; Galli, SM.; Chapman, FA.; (1998). Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon Acipenser oxyrhinchus. Comparative Biochemistry and Physiology, Part A; 120: 609-616.##Altinok, I.; Grizzle, J.; (2004). Excretion of ammonia and urea by phylogenetically diverse fish species in low salinities. Aquaculture; 238: 499-507.##Ataimehr, B.; Mojazi Amiri, B.; Abdolhay, H.; Mirvaghefi, A.; (2006). Changes of number and size of gill chloride cells and mortality of Caspian brown trout (Salmo trutta caspius) in different size and salinities. Iranian Fisheries Journal; 15: 119-127.##Beyenbach, KB.; (2004). Kidneys sans glumeruli. AJP –Renal; 286: 81- 827.##Caberoy, N. B. and Quinitio, G. F. (2000). Changes in Na+-K+-ATPase activity and gill chloride cell morphology in the grouper Epinephelus coioides larvae and juveniles in response to salinity and temperature. Fish Physiology and Biochemistry; 23: 83-94.##Chakraborty, BK.; Mirza, MJA.; (2007). Effect of stocking density on survival and growth of endangered bata, Labeo bata (Hamilton–Buchanan) in nursery ponds. Aquaculture; 265: 156-162.##Cinar, K.; Aksoy, A.; Emre, Y.; Aşti, RN.; (2009). The Histology and Histochemical Aspects of Gills of the Flower Fish, Pseudophoxinus Antalyae, Veterinary Research Communications; 33: 453-460.##Cioni, C.; Demerich, D.; Cataldi, E.; Cataudella, S.; (1991). Fine structure of chloride cells in freshwater adapted Oreochromis niloticus (Linnaeus) and Oreochromis mossambicus (Peters). J Fish Biol; 39: 197-209.##Das, DK.; Pal, AK.; Chakraborty, S.; Manush, S.; Chatterjee, N.; Mukherjee, S.; (2004). Thermal tolerance and oxygen consumption of Indian Major Carps acclimated to four temperatures. J. Therm. Biol.; 29: 157-163.##Das, T.; Pal, A.; Chakraborty, S.; Manush, S.; Sahu, N.; Mukherjee, S.; (2005). Thermal tolerance, growth and oxygen consumption of Labeo rohita fry (Hamilton, 1982) acclimated to four temperatures. J. Therm. Biol.; 30: 378-383.##Evans, DH.; (1998). The physiology of fishes. CRC Press, 519P.##Fernandes, C.; Fontaínhas-Fernandes, A.; Monteiro, S.; Salgado, M.; (2007). Changes in plasma Electrolytes And Gill Histopathology In Wild Liza Saliens From the Esmoriz-Paramos Coastal Lagoon, Portugal, Bulletin of environmental Contamination And Toxicology; 79: 301-305.##Fielder, DS.; Allan, GL.; Pepperall, D.; Pankhurst, PM.; (2007). The effect of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture; 272: 656-666.##Gracia-Lopez, V.; Rosas-Vazquez, C.; Brito-Perez, R.; (2006). Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis. Comp. Biochem. Physiol. A Physiol; 145 A: 340-345.##Guner, Y.; Ozden, O.; Cagirgan, H.; Altunok, M.; Kizak, V.; (2005). Effect of salinity on the Osmoregulatory functions of the gills in Nile Tilapia (Oreochromis niloticus). Turk. Vet. Anim. Sci.; 29: 1259-1266.##Hinton, DE.; Lauren, DJ.; Holliday, T.; Giam, C.; (1988). Liver Structural Alterations Accompanying Chronic Toxicity In Fishes: Potential Biomarkers Of Exposure Hirose S, Kaneko T, Naito N and Takei Y(2003) Molecular biology of major  components of chloride cells. J. Com. Biochem. Physiol.; Part B: 136, 593-620.##Hirose, S.; Kaneko, T.; Naito, N.; Takei, Y.; (2003). Molecular biology of major Copmponents of Chloride Cell. Biochemistry and physiology. Part3; 136: 593-620.##Imsland, AK.; Gunnarsson, S.; Foss, A.; Stefansson, SO.; (2003). Gill Na+/K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture; 218: 671-683.##Jabbarzadeh Shiadeh, SM.; Mojazi Amiri, B.; Abtahi, B.; Nazari, RM.; (2000). Study on the changes of some physiological factors during osmoregulation of juvenile Persian sturgeons (Acipenser persicus). Iranian Journal of Fisheries Sciences; 2(1): 61-74.##Kaneko, T.; Watanabe, S.; Kyung, Mi L.; (2008). Functional morphology of mitochondrion-rich cells in euryhaline and stenohaline teleosts. Aqua Bioscience Monogro; 1(1): 1-62.##Kim, WS.; Yoon, SJ.; Gil, JW.; Lee, TW.; (2005). Effects of temperature changes on the endogenous rhythm of oxygen consumption in the Japanese flounder Paralichthys olivaceus. Fish. Sci.; 71: 471-478.##Koeypudsa, W.; Jongjareanjai, M.; (2011). Impact of water temperature and sodium chloride (NaCl) on stress indicators of hybrid catfish (Clarias gariepinus, Burchell x C. macrocephalus, Gunther). Songklanakarin Journal of Science and Technology; 33(4): 369-374.##Laurent, P.; Hebebi, N.; (1989). Gill morphometry & fish osmoregulation. Canadian Journal of Zoology; 67: 3055-3063.##Lin, CH.; Huang, CL.; Yang, CH.; Lee, TH.; Hwang, PP.; (2004). Time-course changes in the expression of Na, K-ATPase and the morphometry of mitochondrion-rich cells in gills of euryhaline tilapia (Oreochromis mossambicus) during freshwater acclimation. J. Exp. Zool.; 301A: 85-96.##Loong, AM.; Pang, CYM.; Hiong, KC.; Wong, WP.; Chew, SF.; Ip, Y.K.; (2008). Increased urea synthesis and/or suppressed ammonia production in the African lungfish, Protopterus annectens, during aestivation in air or mud. J. Comp. Physiol; B 178: 351-363.##Luz, RKM.; Artinez-Alvarez, RM.; Depedro, N.; Delgodo, MJ.; (2008). Growth, food intake and metabolic adaptations in goldfish (Carassius auratus) exposed to different salinities. Aquaculture; 276: 171-178.##Marshall, WS.; Lynch, EM.; Cozzi, RR.; (2002). Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to sea water. J. Exp. Biol.; 205: 1265-1273.##Mylonas, CC.; Pavlidis, M.; Papandroulakis, N.; Zaiss, MM.; Tsafarakis, D.; Papadakis, IE.; Varsamos, S.; (2009). Growth performance and osmoregulation in the She drum (Umbrina cirrosa) adapted to diffrent environmental salinities. Aquaculture; 287: 203-210.##Pousti, I.; Adib Moradi, M.; (2003). Comparative Histology and Histiotechnique. University of Tehran Publications, Tehran, Iran.531p.##Richard, JG.; Semple, JW.; Bystriansky, JS.; Schulte, PM.; (2003). Na+/K+-ATPase alphaisoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J. Exp.; 206: 4475-4486.##Rubio, VC.; Sánchez-Vázquez, FJ.; Madrid, JA.; (2005). Effects of salinity on food intake and macronutrient selection in European sea bass. Physiol. and Behavior; 85: 333-339.##Sattari, M.; (2003). Ichthyology (1) anatomy and physiology, Press the Mehr in cooperation with the University of Guilan, 659PP.##Smith, CJ.; Shaw, BJ.; Handy, RD.; (2007). Toxicity of Single Walled CarbonNanotubes To Rainbow Trout, (Oncorhynchus mykiss): Respiratory Toxicity, Organ Pathologies,  And Other Physiological Effects, Aquatic Toxicology; 82: 94-109.##Uchida, K.; Kaneko, T.; (1996). Enhanced chloride cell turn over in the gill of chum salmon fry in seawater. Zoology Science; 13: 655-660.##Uliano, E.; Cataldi, M.; Carella, F.; Migliaccio, O.; Iaccarino, D.; Agnisola, C.; (2010). Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio). Comparative Biochemistry and Physiology; Part A 157: 283-290.##Virabhadrachari, V.; (1961). Structural changes in the gills, intestine and kidney of Etroplus maculatus (Teleostei) adapted to diffrent salinities. Quarterly Journal of Microscopical Science; 102(3): 361-369.##Wang, JQ.; Lui, H. PH.; Fan, L.; (1997). Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinus carpio) fingerlings. Aquaculture; 148: 115-124.##Wright, PA.; Pärt, P.; Wood, CM.; (1995). Ammonia and urea excretion in the tidepool sculpin Oligocottus maculosus: sites of excretion, effects of reduced salinity and mechanisms of urea transport. Fish Physiol. Biochem; 19: 111-123.##Wuenschel, M.; Jugovich, AR.; Hare, JA.; (2005). metabolic response of juvenile gray snapper (Lutjanus griseus) to temperature and salinity: physiological cost of different environments. J. Exp. Mar. Biol. Ecol.; 321: 145-154.##Zydlewski, J.; McCormick, SD.; (2001). Developmental & environmental regulation of chloride cells in young American Shad (Alosa sapidissima). Journal of Experimental Zoology; 290: 73-87.##