با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه زیست شناسی دریا، دانشکده علوم دریایی دانشگاه دریانوردی و علوم دریایی چابهار

2 دانشجوی کارشناسی ارشد زیست شناسی دریا، دانشکده علوم دریایی دانشگاه دریانوردی و علوم دریایی چابهار

چکیده

چکیده

خارپوستان گروهی قدیمی از بی‎مهرگان دریایی بوده که منبع غنی ترکیبات ضد­باکتری با مکانیسم فعالیت بالا هستند. هدف از مطالعه حاضر، بررسی اثر ضدباکتریایی پوسته توتیای دریایی گونه Echinometra mathaei در دوزهای مختلف، روی چند سویه­ باکتری بیماری‎زای انسانی است. پس از انجام نمونه­برداری و انتقال نمونه‎ها به آزمایشگاه، جانور تشریح و پوسته آن جدا و پس از شستشو و آسیاب شدن، توسط حلال کلروفرم عصاره­گیری صورت گرفت و غلظت­های مختلف 25/11-25/1 میلی‎گرم بر میلی‎لیتر تهیه شد و جهت تعیین فعالیت ضدباکتریایی آن­ها، روی باکتری‎های Staphylococcus aureus، Enterococcus faecalis، Escherichia coli و Klebsiella pneumonia از تست انتشار از دیسک استفاده شد. نتایج نشان داد که غلظت­های مختلف عصاره تهیه شده در باکتری‎های مختلف دارای اختلاف معنی‎داری هستند) 05/0(p

کلیدواژه‌ها

Abubakar, L.; Mwangi, C.; Uku, J.; Ndirangu, S.; (2012). Antimicrobial activity of various extract of the sea urchin Tripneustes gratilla (Echinoidea). African Journal of Pharmacology and Therapeutics; 1(1): 19-23.
Adibpour, N.; Nasr, F.; Nematpour, F.; Shakouri, A.; Ameri, A.; (2014). Antibacterial and Antifungal Activity of Holoyjuria leucospilota Isolated From Persian Gulf and Oman Sea. Jundishapur j Microbiol; 7(1): e8708.
Ageenko, V.N.; Kiselev, V.K.; Nelly, A.O.; (2011). Epression Of Pigments Cell-Specific Genes In The Ontogenesis of The Sea Urchi Strongylocentrotus Intermedius. Hindawi Publishing Corporation; Article ID 730356, 9 pages.
Asleian, H.; Kamrany, A.; Yousefzadey, M.; Keshavarz, M.; (2014). Antibacterial activity of various extracts of the sea urchin Echinometra mathaei; 37-52.
Bickmeyer, U.; Assmann M.; Kock, M.; Christian, S.; (2005). A secondary metabolite, 4,5dibromopyrrole-2-carboxylic acid , from marinesponges of the genus Agelas alters cellular calciumsignals. Environmental toxicology and pharmacology; 19: 423-427.
Blunt, JW.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R.; (2007).  Marine natural products. Nat Prod Rep; 21: 1-49.
Briskin, D.; (2000). Medicinal Plants and Phytomedicines.Linking Plant Biochemistry and Physiology to Human Health. Plant Physiology; 124: 507-514.
Brogden, KA.; (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol; 3: 238-250.
Casas, SM.; Comesana, P.; Cao, A.; Villalba, A.; (2011).  Comparison of antibacterial activity in the hemolymph of marine bivalves from Galicia (NW Spain). J. Invertebr. Pathol; 106: 343-345.
De Vries, D.J.; Hall, M.R.; (1994). Marine biodiversity as a source of chemical diversity. Drug Dev; 33: 161-173.
Hale, JD.; Hancock, RE.; (2007). Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther; 5: 951-959.
Harper, M.K.; Bungi; T.S.; Copp, R.D.; James, B.S.; Lindsay, A.D.; Richardson, P.C.; Schnabel, D.; Tasdemir, R.M.; Vanwagoner, S.M.; Verbitski, M.; Ireland, C.M.; (2001). Introduction to the chemical ecology of marine natural products. In: J.B. McClintock and B.J. Baker (eds), Marine chemical ecology, marine biology; 3-69.
Haug, T.; Kjuul,  AK.; Styrvold, OB.; Sandsdalen, E.; Olsen, MO.; Stensvag, K.; (2002). Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea) and Asterias rubens (Asteroidea). J. Invertebr. Pathol; 81: 94-102.
Jahan, N.; Khatoon, R.; Shahzad, A.; Shahid, M.; Ahmad, S.; )2013(. Comparison of antibacterial activity of parent plant of Tylophora indica Merr. with its in vitro raised plant and leaf callus. African Journal of Biotechnology; 12(31): 4891 4896.
Jha, RK.; Zirong, Xu.; (2004). Biomedical Compounds from Marine organism. Mar Drugs; 2(3): 123-146.
Kamysz, W.; Okroj, M.; Łukasiak, J.; (2003). Novel properties of antimicrobial peptides. Acta Biochim Pol; 50: 461-469.
Lai, Y.G.; (2009). AMPed up immunity: how antimicrobial peptides have multple roles in immune defense. Trends Immunol; 30: 131-141.
Lebedev, A.; Lvanova, M.; Levitsky, D.; (2008). Iron Chelators and Free Radical Scavengers In Naturally Occuring Polyhyroxylated 1, 4-Naphthoquinones. Hemoglobin; 32(1-2): 165-79.
Nicolas, P.; (2009). Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J; 276: 6483-6496.
Nourozy, J.; Valey, Gh.; Yousefy, H.; (2004). The effect of mutations on different methods and patterns of antibiotic resistance plasmids in E.coli and Staphylococcus aureus. Scientific Journal; 8(29): 8-1.
Ovchinnikon, T.V.; (2006). Aurelin a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem. Biophys. Res. Commun; 348: 514-523.
Reich, M.L.; (2006). Combrian holothurians the early fossil record and evolution of Holothuroidea. Journal Georges Ubaghs (Dijon, France: Universite de Bourgogne) dipl. geol. David Ware; 36-37.
Rinkevich, B.; (2000). Cell culture from marin invertebrates: obstacle, new approches and recent improvements. J. Biotechnol; 70: 133-153.
Schillaci, D.; Arizza, V.; (2013). Echinoderm Antimicrobial Peptides to Contrast Human Pathogens. Natural Products Chemistry & Research; 1: 2.
Service, M.; Wardlaw, A.C.; (1984). Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp. Biochem. Physiol; B79: 161-165.
Shankarlal, S.; Prabu, K.; Natarajan, E.; (2011). Antimicrobial and Antioxidant Activity of Purple Sea Urchin Shell (Salmacis virgulata). American-Eurasian Journal of Scientific Research; 3: 178-181.
Stabili, L.; Lassagues, M.; Pastore, M.; (1996). Study on the antibacterial capabilities of eggs of Paracentrotus liviys (Echinodermata: Echinodea). J. Invertebr. Pathol; 67: 180-182.
Stabili, L.; Pagiliara, P.; (1994). Antibacterial protection in Marthasterias glacialis eggs-characterization of lysozyme-like activity. Comp. Biochem. Physioal; B 109, 709-713.
Uma, B.; Parvathavarthini, R.; (2014). Antibacterial Activity of Hydroalcohil Extract of Sea Urchin Temnopleurus Alexandri. Journal of Applied Research; Issue 1: 1677-1680.
Uma, B.; Paravathavarthini, R.; (2010). Antibacterial Effect of Hexane extract of Sea Urchin, Temnopleurus alexandri. International Journal of PharmTech Research; 3: 1677-1680.
Uma, B.; Parvathavarthini, R.; (2014). Antibacterial Activity of Hydroalcohil Extract of Sea Urchin Temnopleurus Alexandri. Journal of Applied Research. Volume 4- Issue:1
Venugopal, V.; (2009). Marine products for healthcare : function and bioactive nutraceutical compound from the ocean. CRC Press Taylor & Francis Group; Boca Raton, FL, USA; 23-50.
WHO (World health Organization).; (1998). The World Health Report 1998, Life in the 21st century A vision for all. Report in the Director-General. Genova, Switzerland. Pp 30-46.
Yasoda, H.N.; Chi, Z.; Zhu, K.; (2006). Probiotics and sea cucumber farming. SPC beche-de-mer Information Bulletin; 24: 4-8.
Yount, NY.; Bayer, AS.; Xiong, YQ.; Yeaman, MR.; (2006). Advances in antimicrobial peptide immunobiology. Biopolymers; 84: 435-458.
Zhou, D.Y.; Qin, L.; Zhu, B.W.; Wang, X.D.; Tan, H.; Feng Yang, J. et al.; (2011). Extraction and Antioxidant Property of Polyhydroxylated Naphthoquinone Pigments From Spines of Purple Sea Urchin Strongylocentrotus Nudus. Food Chemistry; 129(4): 1591-1597.