In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Ph. D., Faculty of Science, Department of Biology, ‎Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 M. A., Faculty of Science, Department of Biology, ‎Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Associate Professor of Animal Physiology, Faculty of ‎Biology, Shahid Beheshti University of Tehran, Tehran, ‎Iran

Abstract

Previous studies have shown that ghrelin inhibits the activity of Hypothalamus-Pituitary-Thyroid (H-P-T) axis. It is also proved that ghrelin increases the appetite via Agouti Related Protein and neuropeptide Y Pathway, decreases T3 and T4 secretion. Also morphine by effect on Pituitary hormones like TSH decreases T3 and T4 concentrations. Thus, the goal of this study was to determine the influence of the interaction between ghrelin and morphine on thyroid hormones concentration. Twenty one male Wistar rats weighing 200-250 g were randomly divided into 3 groups. The groups received 5 nmol ghrelin, 1µg morphine or 5 nmol ghrelin together with 1µg morphine in third cerebral ventricle in volumes of 3 μl .The blood samples were collected every day. Starting one day before and up to one day after injections. Brain slices were taken to ensure that the place of the canulae was right. The plasma was analysed by Radioimmunoassay technique to determine T3 and T4 concentrations. The results showed that the i.c.v injection of ghrelin and morphine significantly decreased the mean plasma concentrations of thyroid hormones (P<0.05). Co-administration of these two substances in some of groups showed that decrease mean plasma concentrations of thyroid hormones (P<0.05). This study showed that ghrelin and morphine significantly decreased mean plasma concentration of T3 and T4. Co-administration of two substances in some of groups showed that decrease mean plasma concentration of thyroid hormones (p<0.05).

Keywords

Amoo-Rajabi, O.; Moghimi, A.; Khazali H. (2012). Effect of ICV injection of ghrelin and leptin on T3 and T4 plasma levels in Rat. Physiology and Pharmacology; 16(1): 70-78.
Date, Y.; Kojima, M.; Hosoda, H.; Sawaguchi, A.; Mondal, M.S.; Suganuma, T.; Matsukura, S.; Kangawa, K.; Nakazato, M. (2000). Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology; 141(11): 4255-4261.
Easterling, K.W.; Holtzman, S.G. (2001). Central discriminative effects of morphine in rats: training via intracerebroventricular administration. Brain research bulletin; 56(6): 545-551.
Ellacott, K.L.; Cone, R.D. (2004). The central melanocortin system and the integration of short-and long-term regulators of energy homeostasis. Recent progress in hormone research; 59(1): 395-408.
Fekete, C.; Kelly, J.; Mihály, E.; Sarkar, S.; Rand, W.M.; Légrádi, G.B.; Emerson, C.H.; Lechan, R.M. (2001). Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology; 142(6): 2606-2613.
Fekete, C.; Sarkar, S.; Rand, W.M.; Harney, J.W.; Emerson, C.H.; Bianco, A.C.; Lechan, R.M. (2002). Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology; 143(10): 3846-3853.
Gholami, K.; Kesmati, M.; Kazeminejhad, R.; Zangene, F.; Rasekh, A. (2007). Diverse effects of acute and chronic administrated levothyroxine on the morphine withdrawal syndrome in male mice. Physiology and Pharmacology; 11(1): 76-81.
Gosnell, B.A.; Levine, A.S.; Morley, J.E. (1983). The effects of aging on opioid modulation of feeding in rats. Life sciences; 32(24): 2793-2799.
Gozashti, M.H.; Mohammadzadeh, E.; Divsalar, K.; Shokoohi, M. (2014). The effect of opium addiction on thyroid function tests. Journal of Diabetes & Metabolic Disorders; 13(1): 5.
Gysling, K.; Wang, R.Y. (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain research; 277(1): 119-127.
Hagan, M.M.; Rushing, P.A.; Benoit, S.C.; Woods, S.C.; Seeley, R.J. (2001). Opioid receptor involvement in the effect of AgRP-(83-132) on food intake and food selection. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology; 280(3): R814-R821.
Hashimoto, H.; Fujihara, H.; Kawasaki, M.; Saito, T.; Shibata, M.; Otsubo, H.; Takei, Y.; Ueta, Y. (2007). Centrally and peripherally administered ghrelin potently inhibits water intake in rats. Endocrinology; 148(4): 1638-1647.
Hayashida, T.; Nakahara, K.; Mondal, M.; Date, Y.; Nakazato, M.; Kojima, M.; Kangawa, K.; Murakami, N. (2002). Ghrelin in neonatal rats: distribution in stomach and its possible role. Journal of Endocrinology; 173(2): 239-245.
Hochberg, Z.E.; Pacak, K.; Chrousos, G.P. (2003). Endocrine withdrawal syndromes. Endocrine Reviews; 24(4): 523-538.
Holst, B.; Holliday, N.D.; Bach, A.; Elling, C.E.; Cox, H.M.; Schwartz, T.W. (2004). Common structural basis for constitutive activity of the ghrelin receptor family. Journal of Biological Chemistry.
Iglesias, L.; Calzada, B.; Vega, J.; Hernandez, L.; Pérez-Casas, A. (1991). Effects of morphine on the pituitary-thyroid axis: morphological and analytical studies. Functional and developmental morphology; 1(4): 3-6.
Kamegai, J.; Tamura, H.; Shimizu, T.; Ishii, S.; Sugihara, H.; Wakabayashi, I. (2001). Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes; 50(11): 2438-2443.
Kim, M.; Small, C.; Stanley, S.; Morgan, D.; Seal, L.; Kong, W.; Edwards, C.; Abusnana, S.; Sunter, D.; Ghatei, M. (2000). The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. The Journal of clinical investigation; 105(7): 1005-1011.
Konecka, A.M.; Sadowski, B.; Jaszczak, J.; Panocka, I.; Sroczynska, I. (1984). Suppression of food and water intake after intracerebroventricular infusion of morphine and naloxone in rabbits. Archives internationales de physiologie et de biochimie; 92(3): 219-226.
Lawrence, C.B.; Snape, A.C.; Baudoin, F.M.-H.; Luckman, S.M. (2002). Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology; 143(1): 155-162.
Mahmoudi, F.; Mohsennezhad, F.; Khazali, H.; Ehtesham, H. (2011). The effect of central injection of ghrelin and bombesin on mean plasma thyroid hormones concentration. Iranian journal of pharmaceutical research: IJPR; 10(3): 627.
Mansouri, M.; Khazali, H. (2008). Determination of the effect of the interaction between Ghrelin and serotonin agonist (R)-8-OH-DPAT on the mean plasma concentrations of T3 & T4 in rat. Physiology and Pharmacology; 12(2): 142-148.
Mantzoros, C.S.; Moschos, S.J. (1998). Leptin: in search of role (s) in human physiology and pathophysiology. Clinical endocrinology; 49(5): 551-567.
Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. (2001). A role for ghrelin in the central regulation of feeding. Nature; 409(6817): 194.
Pereira Jr, J.C.; Pradella-Hallinan, M.; Pessoa, H.D.L. (2010). Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis. Clinics; 65(5): 547-554.
Rauhala, P.; Männistö, P.; Tuominen, R.K. (1988). Effect of chronic morphine treatment on thyrotropin and prolactin levels and acute hormone responses in the rat. Journal of Pharmacology and Experimental Therapeutics; 246(2): 649-654.
Sarkar, S.; Légrádi, G.; Lechan, R.M. (2002). Intracerebroventricular administration of α-melanocyte stimulating hormone increases phosphorylation of CREB in TRH-and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain research; 945(1): 50-59.
Shintani, M.; Ogawa, Y.; Ebihara, K.; Aizawa-Abe, M.; Miyanaga, F.; Takaya, K.; Hayashi, T.; Inoue, G.; Hosoda, K.; Kojima, M. (2001). Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes; 50(2): 227-232.
Wang, L.; Saint-Pierre, D.H.; Taché, Y. (2002). Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neuroscience letters; 325(1): 47-51.
Williams, J.T.; Christie, M.J.; Manzoni, O. (2001). Cellular and synaptic adaptations mediating opioid dependence. Physiological reviews; 81(1): 299-343.
Wren, A.M.; Small, C.J.; Abbott, C.R.; Dhillo, W.S.; Seal, L.J.; Cohen, M.A.; Batterham, R.L.; Taheri, S.; Stanley, S.A.; Ghatei, M.A. (2001). Ghrelin causes hyperphagia and obesity in rats. Diabetes; 50(11): 2540-2547.