In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Assistant Professor, Fisheries group, Marine Sciences, Chabahar Maritime University, Chabahar, Iran

2 Assistant Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran

Abstract

In this study, in addition to the LC50 and the maximum allowable concentration, effects of silver nanoparticles on several of immune and blood serum enzymes parameters of Barbus grypus were determined For this purpose, 240 shirbut, to investigate the effects of sub lethal toxicity were divided as follows-control treatment (G1), the concentration LC50 1% (0.012 mg/L AgNP) (G2), concentration LC50 2% (0.025 mg/L AgNP) (G3) and concentration LC50 4% (0.05 MG/L AgNP) (G4) and concentration LC50 8% (0.1 Mg/ L AgNP) (G5). Then on days zero, 7, 14 and 21 immune responses and serum enzymes (ALT, LDH, SGOP, SGPT) in Barbus grypus were measured. In the study, WBC counts increased significantly (P<0.05) in G2, G3, G4 and G5 treatments compared to control (G1). Serum anti-bacterial activity was enhanced in G3 in twenty first day and G4 and G5 in 14th and 21s days in compared to control. Serum lysozyme activity enhanced significantly (P<0.05) in (G4) in 14th and (G5) 14th and 21s in days compared to control. ALT and LDH Level decreased significantly in (G2), (G3), (G4) and (G5) treatments in 21s day compared to control. SGPT level decreased significantly in (G2), (G3), (G4) and (G5) in 21s day compared to control. SGOT level decreased significantly in (G3), (G4) and (G5) treatments in 21s day compared to control. According to the results of this study concentrations toxicity of nano silver increased immune responses and serum enzymes.

Keywords

Main Subjects

Ademuyiwa, O.; Ugbaja, R.; Rotimi, S.; Abam, E.; Okediran, B.; Dosumu, O.; Onunkwor, B. (2007). Erythrocyte acetylcholinesterase activity as a surrogate indicator of lead-induced neurotoxicity in occupational lead exposure in Abeokuta, Nigeria. Environ. Toxicol. Pharmacol; 24: 183-188.
Annino, J.S.; Gese, R.S. (1976). Clinical chemistry principle and procedures .Fourth edition. Little Brown and Company Boston. 
Aydın, R.; Köprücü, K. (2005). Acute toxicity of diazinon on the common carp (Cyprinus carpio L.) embryos  and larvae. Pestic. Biochem. Physiol; 82, 220-225.
Banaee, M.; Mirvaghefi, A.R.; Rafei, G.R.; Majazi Amir, B. (2008). Effects of sub-lethal diazinon concentration on blood plasma biochemistry, International Journal Environmental Research; 2; 189-198.
Bar-Ilan, O.; Albrecht, R.M.; Fako, V.E.; Furgeson, D.Y. (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebra fish embryos Small; 5(16): 1897-1910.
Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. (2008). Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing, Ecotoxicology; 17: 387-395.
Bilberg, K.; Malte, H.; Wang, T.; Baatrup, E. (2010). Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol; 96: 32-38.
Boudou, A.; Ribeyre, F. (1997).  Aquatic ecotoxicology: From the ecosystem to the cellular and molecular levels. Environmental Health Perspectives; 105: 21-35.
Chae, Y. J.;  Pham, C.H.; Lee, J.; Bae, E.;  Yi, J.;  Gu, M.B. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes) Aquatic Toxicology; 94(4): 320-327.
Chen, X.; Schluesener, H.; Nanosilver, J. (2008). A nanoproduct in medical application. Toxicology Letters; 176 (1): 1-12.
Choi, O.; Yu, C.Y.; Fernández, E.; Choi, Z.H. (2010). Interactions of nanosilver with Escherichia coli cellsin planktonic and biofilm cultures, Water Res., doi:10.1016/j. watres.2010.06.069.
Chopra, I. (2007). The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? Journal of Antimicrobial hemotherapy; 59 (4): 587-590.
Ellis, A.E. (1990). Lysozyme assay. In: Stolen, J.S.; Fletcher, D.P.; Anderson, B.S.; Robertson, B.S. (Eds.), Techniques in Fish Immunology. SOS Publication, Fair Haven, NJ, pp. 101-103
Fabrega, J.; Fawcett, S.R.; Renshaw, J.C.; Lead, J.R. (2009). Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol a; 43: 7285-90.
Farkas, J.; Christianc, P.; Alberto, A.; Urread, G.; Roose, N.; Hassellvd, M.;  Tollefsena, K.E.V.; Thomasa, K. (2009). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology; 96: 44-52.
Federici, G.; Shaw, B.J.;  Handy,  R.D. (2007). Toxicity  of titanium  dioxide  nanoparticles  to  rainbow  trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and  other  physiological  effects,  AquatToxicol; 84: 415-430
Gong, P.; Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.; Zhang, S.; Yang, X. (2007). Preparation and antibacterial activity of Fe3 O4-Ag nanoparticles. Nanotechnology; 18: 604-611.
Gopalakannan, A.; Arul, V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture; 255: 179-187.
Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.C.; Barber, D.S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms, Environmental Toxicology and Chemistry; 27(9): 1972-1978.
Hogstrand, C.; Wood, C.M. (1998). Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: Implications for water quality criteria. Environmental Toxicology and Chemistry; 17 (4): 547-561.
Holt, K.B.; Bard, A.J. (2005). Interaction of silver (I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag (2005) Biochemistry; 44 (39): 13214-13223.
Iwama, G.; Nakanishi, T. (1996). The fish immune system. Academic Press, London. Chapter 3: innate Immunity in fish, pp: 73-114.
Kajita, Y.; Sakai, M.; Atsuta, S.; Kobayash, M. (1990). The immunonodulatory effects of levamisole on rainbow trout, (Oncorhynchus mykiss). Fish Pathol; 25: 93-98.
Kaneko, J.J. (1989). Clinical Biochemistry of Domestic Animals. Fourth edition. Academic press, Inc.
Karthikeyeni, S.; Vijayakumar, T.S.; Vasanth, S.; Ganesh, A.; et  al. (2013). Biosynthesis of Iron oxidenanoparticles and its haematological effects on freshwater fish Oreochromis mossambicus, J.  Acad. Indus. Res.;  1(10): 645-649.
Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.I.; Kim, S.H.; Park, S.J.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. (2007). Antimicrobial effects of silver nanopaticles. Nanomedicine; Nanotechnology. Biology, and Medicine; 3, 95-101.
Lansdown, A.B. (2002) Silver 1. Its antibacterial properties and mechanism of action. Journal of wound Care; 11, 125-130.
Mohammadi, A. (2011). Effects of exposure to diazinon on some hematological parameters and serum lysozyme activity benni (Barbus sharpeyi). Ph.D. thesis Faculty of Veterinary medicine  Shahid Chamran University, Ahvaz.
Mohapatra, B.C.; Rengarajan, K. (1995). A Manual of Bioassays in the Laboratory and Their Techniques. CMFRI Special Publication, 64, CMFRI, Cochin, India, p. 75.
Peralta, J.R.; Zhaoa, L.; Lopez, M.M. (2010). Nanomaterials andtheenviron ment: Areview for the biennium 2008-2010, Journal of Hazardous Materials, under publish.
Raa, J.; Roerstad, G.; Engstad, R.; Robetsen, B. (1992). The use of immune stimulants to increase resistance of aquatic organisms to microbial infections. Aquacult; 1: 39-50.
Rai, M.; Yadav, A.; Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances; 27: 76-83.
Shahbazzadeh, D.A.; Ahari, H.B.; Rahimi, N.M.; Dastmalchi, F.; Soltani, M. (2009). The effects of Nanosilver on survival percentage of rainbow trout, Pakestan Journal of Nutrition; 8(8): 1178-1180.
Sharma, V.K.; Yngard, R.A.; Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities, Advances in Colloid and Interface Science; 145; 83-96.
Thrall, M.A. (2004). Veterinary Hematology and Clinical Chemistry. Lippincott Williams & Wilkins, USA, pp: 241, 277-288, 402.