In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Assistant Professor, Department of Biology, Payame Noor University, Tehran, Iran

2 Instructor, Department of Biology, Payame Noor University, Tehran, Iran

3 Professor, Department of Biology, Payame Noor University, Tehran, Iran

Abstract

Abstract
Amyloids are created from various proteins in denaturant conditions. Highly active surface, makes these materials suitable for enzyme immobilization. The aim of this research was to study the production of amyloid fibrils and investigate the possibility of using them as a matrix for enzyme immobilization. Response surface methodology (RSM) was used to generate the maximum amyloid content. The results of the Congored spectrometry and circular dichroism (CD) were analyzed by Design Expert 7 software (Trial version) and transmission electron microscopy was used to confirm the presence of amyloid fibrils. The immobilization was done by creating glutaraldehyde mediated crosslink of enzyme on the amyloid fibrils and kinetic factors including activity, specific activity, optimal temperature and pH and thermal stability were compared with the free enzyme. The highest amyloid content was obtained after 72.6 hours agitation of bovine serum albumin at 4.35 mg.ml-1 in mixed citrate–phosphate buffer pH=4.49 at 80 ºC and immobilized lipase was improved relative to free lipase in the case of activity, specific activity, Km and Vmax, optimal temperature and pH and thermal stability at 40 ºC. Amyloid fibrils as a rich material of chemical groups can be suitable for stabilization. This protein matrix can be a good inVivo candidate as a bio–compatible scaffold for enzyme immobilization. Amyloids with a diameter less than 100 nanometers, as new nano–materials, not only increase the stability of lipase but also enhance other kinetic properties as a new nano–matrix.
 

Keywords

Arasteh, A.; Habibi-Rezaei, M.; Ebrahim-Habibi, A.; Moosavi-Movahedi, A. A.; (2012). Response surface methodology for optimizing the bovine serum albumin fibrillation. The Protein Journal; 31(6): 457-465.
Arosio, P.; Knowles, T. P.; Linse, S.; (2015). On the lag phase in amyloid fibril formation. Physical Chemistry Chemical Physics; 17(12): 7606-7618.
Borrelli, G.M.; Trono, D.; (2015). Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. International Journal of Molecular Sciences 16(9): 20774-20840.
Cao, S.-L.; Huang, Y.-M.; Li, X.-H.; Xu, P.; Wu, H.; Li, N.; Lou, W.-Y.; Zong, M.-H.; (2016). Preparation and characterization of immobilized lipase from Pseudomonas cepacia onto magnetic cellulose nanocrystals. Scientific Reports; 6: 20420.
Chan, H.-M.; Xiao, L.; Yeung, K.-M.; Ho, S.-L.; Zhao, D.; Chan, W.-H.; Li, H.-W.; (2012). Effect of surface-functionalized nanoparticles on the elongation phase of beta-amyloid (1–40) fibrillogenesis. Biomaterials; 33(18): 4443-4450.
Clark, T. B.; Ziółkowski, M.; Schatz, G. C.; Goodson III, T.; (2014). Two-photon and time-resolved fluorescence spectroscopy as probes for structural determination in amyloid-β peptides and aggregates. The Journal of Physical Chemistry B; 118(9): 2351-2359.
Dumri, K.; Hung Anh, D.; (2014). Immobilization of lipase on silver nanoparticles via adhesive polydopamine for biodiesel production. Enzyme Research; 14-20.
Fukuda, H.; Kondo, A.; Noda, H.; (2001). Biodiesel fuel production by transesterification of oils. Journal of bioscience and bioengineering 92(5): 405-416.
Guit, R.; Kloosterman, M.; Meindersma, G.; Mayer, M.; Meijer, E.; (1991). Lipase kinetics: Hydrolysis of triacetin by lipase from Candida cylindracea in a hollow‐fiber membrane reactor. Biotechnology and Bioengineering; 38(7): 727-732.
Hadizadeh, S. N.; Ranjbar, B.; Khajeh, K.; (2013). Isolation of Pseudomonas Aeruginosa Hr59 Lipase From Burn Infection and Optimization of Medium by Use of Box-Behnken Design (BBD); 26(2) 229-241.
Holm, N.K.; Jespersen, S.K.; Thomassen, L.V.; Wolff, T.Y.; Sehgal, P.; Thomsen, L.A.; Christiansen, G.; Andersen, C.B.; Knudsen, A.D.; Otzen, D.E.; (2007). Aggregation and fibrillation of bovine serum albumin. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics; 1774(9): 1128-38.
Kim, D.-Y.; Shin, W.-S.; (2016). Functional improvements in bovine serum albumin–fucoidan conjugate through the Maillard reaction. Food Chemistry; 190: 974-981.
Kim, J., Jia, H.; Wang, P.; (2006). Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances; 24(3): 296-308.
Kumar, V., Yedavalli, P.; Gupta, V.; Rao, N. M.; (2014). Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Protein Engineering Design and Selection; 27(3): 73-82.
Lindberg, D.J.; Wranne, M.S.; Gatty, M.G.; Westerlund, F.; Esbjörner, E.K.; (2015). Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Aβ (1-40) and Aβ (1-42). Biochemical and Biophysical Research Communications 458(2): 418-423.
Luo, Q.; Hou, C.; Bai, Y.; Wang, R.; Liu, J.; (2016). Protein assembly: versatile approaches to construct highly ordered nanostructures. Chemical Reviews; 116(22): 13571-13632.
Maldonado, R.; Lopes, D.; Aguiar-Oliveira, E.; Kamimura, E.; Macedo, G.; (2017). A Review on Geotrichum Lipases: Production, Purification, Immobilization and Applications. Chemical and Biochemical Engineering Quarterly; 30(4): 439-454.
Maldonado, R.R.; Aguiar-Oliveira, E.; Fogaça, F.M.; Ramos, G.G.; Macedo, G.A.; Rodrigues, M.I.; (2015). Evaluation of partial purification and immobilization of lipase from Geotrichum candidum. Biocatalysis and Agricultural Biotechnology; 4(3): 321-326.
Milani, E.; Poorazarang, H.; Khah, S.; Vakilian, H.; (2010). Optimization of inulin extraction from Helianthus tuberosus using response surface methodology (RSM). Iranian Food Science & Technology Research Journal; 6(3): 176-183.
Millucci, L.; Raggiaschi, R.; Franceschini, D.; Terstappen, G.; Santucci, A.; (2009). Rapid aggregation and assembly in aqueous solution of Aβ (25–35) peptide. Journal of Biosciences; 34(2): 293-303.
Nickpour, M.; Pazouki, M.; (2014). Synthesis and characteristics of mesoporous sol-gels for lipase immobilization. Int J Eng; 27: 1495-1502.
Pilkington, S.M.; Roberts, S.J.; Meade, S.J.; Gerrard, J.A.; (2010). Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnology Progress; 26(1): 93-100.
Ray, A.; (2012). Application of lipase in industry. Asian Journal of Pharmacy and Technology; 2(2): 33-37.
Ren, Y.; Rivera, J.G.; He, L.; Kulkarni, H.; Lee, D.-K.; Messersmith, P.B. (2011). Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology; 11(1): 63.
Sakai, S.; Liu, Y.; Yamaguchi, T.; Watanabe, R.; Kawabe, M.; Kawakami, K.; (2010). Immobilization of Pseudomonas cepacia lipase onto electrospun polyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnology Letters; 32(8): 1059-1062.
Taha, M.; Quental, M.V.; Correia, I.; Freire, M.G.; Coutinhom J.A.; (2015). Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids. Process Biochemistry; 50(7): 1158-1166.
Tokunaga, Y.; Matsumoto, M.; Sugimoto, Y.; (2015). Amyloid fibril formation from a 9 amino acid peptide, 55th–63rd residues of human lysozyme. International Journal of Biological Macromolecules; 80: 208-216.
Torres, M.D.P.G.; Foresti, M.L.; Ferreira, M.L.; (2013). Cross-linked enzyme aggregates (CLEAs) of selected lipases: a procedure for the proper calculation of their recovered activity. AMB Express; 3(1): 25.
Venkatesagowda, B.; Ponugupaty, E.; Barbosa, A.M.; Dekker, R.F.; (2012). Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World Journal of Microbiology and Biotechnology; 28(1): 71-80.
Wang, W.; Nema, S.; Teagarden, D.; (2010). Protein aggregation-Pathways and influencing factors. International Journal of Pharmaceutics; 390(2): 89-99.
Zare Baghi Abad, V.; Tabatabai Yazdi, F.; Mortazavi, S.; Varidi, M.; (2016). Isolation and identification of lipolytic yeasts from sesame meal of Yazd province and determination the potential of lipase production by them. Journal of Food Science & Technology; (2008-8787) 13(51).
Zhao, Z.Y.; Liu, J.; Hahn, M.; Qiao, S.; Middelberg, A.P.; He, L.; (2013). Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability. RSC Advances; 3(44): 22008-22013.