In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Assistant Professor, Departments of Marine Biology, Faculty of Marine Sciences Chabahar Maritime and Marine Science University

2 Graduate Student, Departments of Marine Biology, Faculty of Marine Sciences Chabahar Maritime and Marine Science University

Abstract

Abstract

Echinoderms, ancient group of marine invertebrates, are a rich source of antibacterial compounds with high activity mechanism. In the present study, the antibacterial effect of sea urchin skin, Echinometra mathaei, was examined in different doses on some pathogenic bacterial strains. After sampling and transport of samples to the laboratory, animals were dissected, and the shucks separated after grinding it and, potentially bioactive metabolites were extracted using chloroform. The extracts were tested for activity against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Klebsiella pneumonia with varying concentration ranged from 1.25 to 11.25 mg/ml. The tests were performed by disk diffusion method. The results showed that the antibacterial effect of different concentrations of extracts on types of bacteria are significantly different (p

Keywords

Abubakar, L.; Mwangi, C.; Uku, J.; Ndirangu, S.; (2012). Antimicrobial activity of various extract of the sea urchin Tripneustes gratilla (Echinoidea). African Journal of Pharmacology and Therapeutics; 1(1): 19-23.
Adibpour, N.; Nasr, F.; Nematpour, F.; Shakouri, A.; Ameri, A.; (2014). Antibacterial and Antifungal Activity of Holoyjuria leucospilota Isolated From Persian Gulf and Oman Sea. Jundishapur j Microbiol; 7(1): e8708.
Ageenko, V.N.; Kiselev, V.K.; Nelly, A.O.; (2011). Epression Of Pigments Cell-Specific Genes In The Ontogenesis of The Sea Urchi Strongylocentrotus Intermedius. Hindawi Publishing Corporation; Article ID 730356, 9 pages.
Asleian, H.; Kamrany, A.; Yousefzadey, M.; Keshavarz, M.; (2014). Antibacterial activity of various extracts of the sea urchin Echinometra mathaei; 37-52.
Bickmeyer, U.; Assmann M.; Kock, M.; Christian, S.; (2005). A secondary metabolite, 4,5dibromopyrrole-2-carboxylic acid , from marinesponges of the genus Agelas alters cellular calciumsignals. Environmental toxicology and pharmacology; 19: 423-427.
Blunt, JW.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R.; (2007).  Marine natural products. Nat Prod Rep; 21: 1-49.
Briskin, D.; (2000). Medicinal Plants and Phytomedicines.Linking Plant Biochemistry and Physiology to Human Health. Plant Physiology; 124: 507-514.
Brogden, KA.; (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol; 3: 238-250.
Casas, SM.; Comesana, P.; Cao, A.; Villalba, A.; (2011).  Comparison of antibacterial activity in the hemolymph of marine bivalves from Galicia (NW Spain). J. Invertebr. Pathol; 106: 343-345.
De Vries, D.J.; Hall, M.R.; (1994). Marine biodiversity as a source of chemical diversity. Drug Dev; 33: 161-173.
Hale, JD.; Hancock, RE.; (2007). Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther; 5: 951-959.
Harper, M.K.; Bungi; T.S.; Copp, R.D.; James, B.S.; Lindsay, A.D.; Richardson, P.C.; Schnabel, D.; Tasdemir, R.M.; Vanwagoner, S.M.; Verbitski, M.; Ireland, C.M.; (2001). Introduction to the chemical ecology of marine natural products. In: J.B. McClintock and B.J. Baker (eds), Marine chemical ecology, marine biology; 3-69.
Haug, T.; Kjuul,  AK.; Styrvold, OB.; Sandsdalen, E.; Olsen, MO.; Stensvag, K.; (2002). Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea) and Asterias rubens (Asteroidea). J. Invertebr. Pathol; 81: 94-102.
Jahan, N.; Khatoon, R.; Shahzad, A.; Shahid, M.; Ahmad, S.; )2013(. Comparison of antibacterial activity of parent plant of Tylophora indica Merr. with its in vitro raised plant and leaf callus. African Journal of Biotechnology; 12(31): 4891 4896.
Jha, RK.; Zirong, Xu.; (2004). Biomedical Compounds from Marine organism. Mar Drugs; 2(3): 123-146.
Kamysz, W.; Okroj, M.; Łukasiak, J.; (2003). Novel properties of antimicrobial peptides. Acta Biochim Pol; 50: 461-469.
Lai, Y.G.; (2009). AMPed up immunity: how antimicrobial peptides have multple roles in immune defense. Trends Immunol; 30: 131-141.
Lebedev, A.; Lvanova, M.; Levitsky, D.; (2008). Iron Chelators and Free Radical Scavengers In Naturally Occuring Polyhyroxylated 1, 4-Naphthoquinones. Hemoglobin; 32(1-2): 165-79.
Nicolas, P.; (2009). Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J; 276: 6483-6496.
Nourozy, J.; Valey, Gh.; Yousefy, H.; (2004). The effect of mutations on different methods and patterns of antibiotic resistance plasmids in E.coli and Staphylococcus aureus. Scientific Journal; 8(29): 8-1.
Ovchinnikon, T.V.; (2006). Aurelin a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem. Biophys. Res. Commun; 348: 514-523.
Reich, M.L.; (2006). Combrian holothurians the early fossil record and evolution of Holothuroidea. Journal Georges Ubaghs (Dijon, France: Universite de Bourgogne) dipl. geol. David Ware; 36-37.
Rinkevich, B.; (2000). Cell culture from marin invertebrates: obstacle, new approches and recent improvements. J. Biotechnol; 70: 133-153.
Schillaci, D.; Arizza, V.; (2013). Echinoderm Antimicrobial Peptides to Contrast Human Pathogens. Natural Products Chemistry & Research; 1: 2.
Service, M.; Wardlaw, A.C.; (1984). Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp. Biochem. Physiol; B79: 161-165.
Shankarlal, S.; Prabu, K.; Natarajan, E.; (2011). Antimicrobial and Antioxidant Activity of Purple Sea Urchin Shell (Salmacis virgulata). American-Eurasian Journal of Scientific Research; 3: 178-181.
Stabili, L.; Lassagues, M.; Pastore, M.; (1996). Study on the antibacterial capabilities of eggs of Paracentrotus liviys (Echinodermata: Echinodea). J. Invertebr. Pathol; 67: 180-182.
Stabili, L.; Pagiliara, P.; (1994). Antibacterial protection in Marthasterias glacialis eggs-characterization of lysozyme-like activity. Comp. Biochem. Physioal; B 109, 709-713.
Uma, B.; Parvathavarthini, R.; (2014). Antibacterial Activity of Hydroalcohil Extract of Sea Urchin Temnopleurus Alexandri. Journal of Applied Research; Issue 1: 1677-1680.
Uma, B.; Paravathavarthini, R.; (2010). Antibacterial Effect of Hexane extract of Sea Urchin, Temnopleurus alexandri. International Journal of PharmTech Research; 3: 1677-1680.
Uma, B.; Parvathavarthini, R.; (2014). Antibacterial Activity of Hydroalcohil Extract of Sea Urchin Temnopleurus Alexandri. Journal of Applied Research. Volume 4- Issue:1
Venugopal, V.; (2009). Marine products for healthcare : function and bioactive nutraceutical compound from the ocean. CRC Press Taylor & Francis Group; Boca Raton, FL, USA; 23-50.
WHO (World health Organization).; (1998). The World Health Report 1998, Life in the 21st century A vision for all. Report in the Director-General. Genova, Switzerland. Pp 30-46.
Yasoda, H.N.; Chi, Z.; Zhu, K.; (2006). Probiotics and sea cucumber farming. SPC beche-de-mer Information Bulletin; 24: 4-8.
Yount, NY.; Bayer, AS.; Xiong, YQ.; Yeaman, MR.; (2006). Advances in antimicrobial peptide immunobiology. Biopolymers; 84: 435-458.
Zhou, D.Y.; Qin, L.; Zhu, B.W.; Wang, X.D.; Tan, H.; Feng Yang, J. et al.; (2011). Extraction and Antioxidant Property of Polyhydroxylated Naphthoquinone Pigments From Spines of Purple Sea Urchin Strongylocentrotus Nudus. Food Chemistry; 129(4): 1591-1597.