In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Department of Pathobiology, Faculty ‎of Veterinary Medicine, Shahid ‎Bahonar University of Kerman, ‎Kerman, Iran‎

2 Molecular Microbiology Research ‎Group, Shahid Bahonar University of ‎Kerman, Kerman, Iran‎

3 Department of Food Science and ‎Technology, Bardsir Faculty of ‎Agriculture, Shahid Bahonar ‎University of Kerman, Kerman, Iran‎

10.30473/eab.2025.74386.1992

Abstract

Antibiotic resistance is one of the most significant global threats. The inappropriate and excessive use of antibiotics in humans and animals plays a major role in the emergence of antibiotic-resistant pathogens. Among food-producing animal industries, aquaculture is rapidly growing and plays a substantial role in global animal protein supply. The present study aimed to evaluate the potential reservoir role of shrimp for antibiotic-resistant Escherichia coli in Kerman city, Iran. A total of 267 healthy shrimp samples were collected over six months from five retail seafood markets. E. coli isolates were identified using conventional culture methods and biochemical tests. Antibiotic susceptibility testing was performed using the disk diffusion method. Out of the 267 shrimp samples, 177 (66.29%) were positive for E. coli. Among these isolates, the highest resistance rates were observed against florfenicol (53.7%), streptomycin (51.9%), and kanamycin (42.3%). Overall, 89.8% of the isolates (159/177) were resistant to at least one antibiotic, and 28.24% (50/177) were identified as multidrug-resistant (MDR) isolates. Additionally, 66.7% of the isolates (118/177) exhibited a Multiple Antibiotic Resistance (MAR) index greater than 0.2, suggesting a potential origin from shrimp farms with high antibiotic usage. These findings highlight the role of shrimp as a passive reservoir for MDR E. coli in the human food chain and underscore the urgent need for stricter antibiotic usage policies and monitoring programs in aquaculture.

Keywords

Main Subjects

Alhabib, I., & Elhadi, N. (2024). Antimicrobial resistance pattern of Escherichia coli isolated from imported frozen shrimp in Saudi Arabia. PeerJ, 12(e18689), 1-19.
Ali, A., Parisi, A., Conversano, M. C., Iannacci, A., D’Emilio, F., Mercurio, V., & Normanno, G. (2020). Food-borne bacteria associated with seafoods: A brief review. Journal of Food Quality and Hazards Control, 7(1), 4-10.
Bacanlı, M., & Başaran, N. (2019). Importance of antibiotic residues in animal food. Food and Chemical Toxicology, 125, 462-466.
Barbosa, L. J., Ribeiro, L. F., Lavezzo, L. F., Barbosa, M. M. C., Rossi, G. A. M., & do Amaral, L. A. (2016). Detection of pathogenic Escherichia coli and microbiological quality of chilled shrimp sold in street markets. Letters in Applied Microbiology, 62(5), 372-378.
Behshood, P., Tajbakhsh, E., & Nourbakhsh, F. (2022). Prevalence of stx1, stx2 and eaeA genes in Shiga toxin-producing Escherichia coli isolated from fish and shrimp in Bushehr. Journal of Zoonosis, 2(1), 1-9.
Bhassu, S., Shama, M., Tiruvayipati, S., Soo, T. C. C., Ahmed, N., & Yusoff, K. (2024). Microbes and pathogens associated with shrimps-implications and review of possible control strategies. Frontiers in Marine Science, 11(1397708), 1-20.
Boss, R., Overesch, G., & Baumgartner, A. (2016). Antimicrobial resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood imported into Switzerland. Journal of Food Protection, 79(7), 1240-1246.
Cabello, F. C., Godfrey, H. P., Buschmann, A. H., & Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet Infectious Diseases, 16(7), 127-133.
Celik, B., Ergul, B., Kekec, A. I., Halac, B., Maslak, B., Sigirci, B. D., Kahraman, B. B., Bagcigil, A. F., Metiner, K., & Ak, S. (2023). Beta-lactam, aminoglycoside, and quinolone resistance in Escherichia coli strains isolated from shrimps and mussels in the Marmara Sea. Veterinární Medicína, 68(5), 208-217.
CLSI. (2023). Performance Standards for Antimicrobial Susceptibility Testing (CLSI supplement M100) (33rd ed.). Wayne, USA, Clinical and Laboratory Standards Institute.
Dib, A. L., Agabou, A., Chahed, A., Kurekci, C., Moreno, E., Espigares, M., & Espigares, E. (2018). Isolation, molecular characterization and antimicrobial resistance of enterobacteriaceae isolated from fish and seafood. Food Control, 88, 54-60.
Jonas, O. B., Irwin, A., Berthe, F. C. J., Le Gall, F. G., & Marquez, P. V. (2017). Drug-resistant infections: a threat to our economic future. World Bank Report, 2, 1-32.
Khan, M., Paul, S. I., Rahman, M. M., & Lively, J. A. (2022). Antimicrobial resistant bacteria in shrimp and shrimp farms of Bangladesh. Water, 14(3172), 1-12.
Krumperman, P. H. (1983). Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Applied and Environmental Microbiology, 46(1), 165-170.
Luu, Q. H., Nguyen, T. B. T., Nguyen, T. L. A., Do, T. T. T., Dao, T. H. T., & Padungtod, P. (2021). Antibiotics use in fish and shrimp farms in Vietnam. Aquaculture Reports, 20(100711),1-8.
Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., & Olsson-Liljequist, B. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268-281.
Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical Veterinary Microbiology (2nd ed.). London, UK, Elsevier Health Sciences. pp. 305-333.
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., & Wool, E. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629-655.
Nadella, R. K., Panda, S. K., Uchoi, D., Kishore, P., Chintada, B., VR, M., VA, M., Badireddy, M. R., Kuricheti, P. P., & Raman, R. P. (2025). Categorization of antibiotic resistant bacterial populations from Shrimp and its culture environment of Andhra Pradesh, India. Aquaculture, 595(741702), 1-13.
Odeyemi, O. A., Amin, M., Dewi, F. R., Kasan, N. A., Onyeaka, H., Stratev, D., & Odeyemi, O. A. (2023). Prevalence of antibiotic-resistant seafood-borne pathogens in Retail Seafood sold in Malaysia: a systematic review and Meta-analysis. Antibiotics, 12(829), 1-19.
Rajendran, K., Sreedharan, K., Deepika, A., & Kulkarni, A. (2022). Shrimp immune system and immune responses. In Fish immune system and vaccines. Springer. pp. 17-43.
Sivaraman, G. K., Rajan, V., Vijayan, A., Elangovan, R., Prendiville, A., & Bachmann, T. T. (2021). Antibiotic resistance profiles and molecular characteristics of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae isolated from shrimp aquaculture farms in Kerala, India. Frontiers in Microbiology, 12(622891), 1-13.
Sung, K., Nawaz, M., Park, M., Chon, J., Khan, S. A., Alotaibi, K., Revollo, J., Miranda, J. A., & Khan, A. A. (2024). Whole-Genome Sequence Analysis of Antibiotic Resistance, Virulence, and Plasmid Dynamics in Multidrug-Resistant E. coli Isolates from Imported Shrimp. Foods, 13(1766), 1-23.
Suyamud, B., Chen, Y., Dong, Z., Zhao, C., & Hu, J. (2024). Antimicrobial resistance in aquaculture: Occurrence and strategies in Southeast Asia. Science of the Total Environment, 907(167942), 1-24.
WBG. (2013). Fish to 2030: prospects for fisheries and aquaculture. World Bank Group. http://documents.worldbank.org/curated/en/458631468152376668
WHO. (2017). Antimicrobial resistance: The food chain. World Health Organization. https://www.who.int/news-room/questions-and-answers/item/antimicrobial-resistance-in-the-food-chain
WHO. (2023). Antimicrobial resistance. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Zhang, S., Huang, Y., Yang, G., Wu, Q., Zhang, J., Wang, J., Ding, Y., Su, Y., Ye, Q., & Wu, S. (2024). High prevalence of multidrug-resistant Escherichia coli in retail aquatic products in China and the first report of mcr-1-positive extended-spectrum β-lactamase-producing E. coli ST2705 and ST10 in fish. International Journal of Food Microbiology, 408(110449), 1-17.