غنی‌سازی مواد غذایی جلبک کلرلا Chlorella sorokiniana (Shihira & R.W. Krauss)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مربی گروه زیست‌شناسی، دانشگاه پیام نور، صندوق پستی 3697-19395، تهران، ایران.

2 دانشیار گروه بیوتکنولوژی، دانشگاه پیام نور، صندوق پستی 3697-19395، تهران، ایران.

3 دانشیار گروه زیست‌شناسی، دانشگاه شاهد، صندوق پستی 3319118651، تهران، ایران.

4 استاد گروه کشاورزی، دانشگاه پیام نور، صندوق پستی 3697-19395، تهران، ایران.

5 استادیار گروه شیمی، دانشگاه پیام نور، صندوق پستی 3697-19395، تهران، ایران.

چکیده

چکیده
جلبک کلرلا (Chlorella sorokiniana) حاوی متابولیت‌های ارزشمندی مانند پروتئین‌ها، ترکیبا­ت آنتی‌اکسیدان، لیپیدها، ویتامین‌ها و مواد معدنی است و به‌عنوان غذای جانوران ودارو مورد استفاده قرار می­گیرد. به همین دلیل در پژوهش حاضر، اثر تغییر شرایط کشت، جهت تولید مکمل غذایی مغذی­تر از جلبک برای تغذیه آبزیان بررسی شد.  بدین منظور، جلبک­ها در محیط کشت پایه بولد اصلاح‌شده Bold (BBM)  کشت شد و به­عنوان منبع کربن به آن5 گرم در لیتر گلوکز افزوده شد. سپس اثر pH، افزودن تیامین پیروفسفات، تغییر مقدار نیترات و فسفات، افزودن مخمر و فقدان گلوکز، بر روی رشد و محتویات متابولیت‌های جلبک مورد بررسی قرار گرفت. بیشترین میزان افزایش رشد، محتوای آنتی‌اکسیدان‌ها، پروتئین وبرخی موادمعدنی  در کشت‌های جلبکی، در محیط­های کشت حاوی غلظت دو برابر نیترات و فسفات واجد تیامین پیروفسفات و بدون تیا­مین پیروفسفات به­دست آمد. افزودن مخمر به شکل غیرمعنی‌داری سبب افزایش وزن خشک و کاهش آنتی‌اکسیدان­ها شد. افزودن تیامین پیروفسفات به تنهایی  و کاهش اندک اسیدیته اثر چندا­نی بر رشد و محتوای متابولیت‌ها در جلبک مورد مطالعه نداشت. فقدان گلوکز سبب کاهش چشمگیر رشد جلبک شد.
 

کلیدواژه‌ها


 

Refernces

 

Andersen, R.A.; (2005). Algal culturing techniques. Elsevier Inc, 589.

Agrawal, S.S.; Paridhavi, M.; (2007). Herbal Drug Technology. Hydrabad, Universities Press; 519-530.

ASTM-D 4698-92, (Standard Practice for Total Digestion of Sediment Samples for Chemical Analysis of Various Metals), (2013). AGA; 5.

Becker, E.W.; (2007). Micro-algae as a source of protein. Biotechnology Advances; 25(2): 207-10.

Chu­ W., Zhengquan W., ­Hailong, S.; Shenglei G.; (2006). ­Effects of different concentrations of nitrogen and phosphorus on chlorophyll biosynthesis, chlorophylla fluoresence, and photos- ynthesis in Larix olgensis seedlings. Frontiers of Forestry in China; 1(2): 170-175

Fiedor,  J.; Burda K.; (2014).Potential role of carotenoids as antioxidants in human health and disease. Nutrients; 6(2): 466-488.

Fried, S.; Mackie, B.; Nothwehr, E.; (2003). Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond. Tillers; 4, 21-24.

Hoffmann, JP.; (1998).  Wastewater treatm ent with suspended and nonsuspended algae. Journal of Phycology; 34(5): 757-763.

Hsu, Ch.Y.; Chao, P.Y.; Hu, Sh.P.; Yang, Ch.M.; (2013). The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food and Nutrition Sciences; 4(8): 1-8.

Hunt, R.W.; Chinnasamy, S.; Bhatnagar, A.; Das, K.C.; (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechno-  logy; 162 (8): 2400-2414

Khatun, B.; Rahman, R.; Rahman, M. S.; (2014). Evaluation of YeastSaccharom yces cerevisiae and Algae, Chlorella vulgaris as Diet for Rotifer Brachionus calyciflorus. The Agriculturists; 12(1): 1-9.

Kobayashi, N.; Noel, E.; Barnes, A.; Watson, A.; Rosenberg, J.; Erickson, G.; Oyler, G.; (2013). Characterization on three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresource Technology; 150: 377-386.

Kong, W.B.; Yang, H.; Cao, Y.T.; Song, H.; Hua, S.F.; Xia, C.G.; (2013) Effect of Glycerol and Glucose on the Enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture, Food Technology and  Biotechnology; 51(1): 62-69.

Krzemiñska, I.; Pawlik-Skowroñska, B.; Trzciñska, M.; Tys, J.; (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering; 37(4), 735-741.

Lin, P.Y.; Tsai, Ch.T.; Chuang, W.L.; Chao, Y.H.; Pan, I.H.; Chen, Y.K.; Lin, Ch.Ch.; Wang, B.Y.; (2017). Chlorella sorokiniana induces mitochondrial mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth invivo. BMC Complementary and Alternative Medicine; 17: 88-108.

Mccaffrey, W.; Burrell, R.; Burrell, M.; Kotelko, B.; (2011). Use of plant growth regulators to enhance algae growth. EP2387304A1.

Mizuno, Y.; Sato, A.; Watanabe, K.; Hirata, A.; Takeshita, T.; Ota, S.; Sato, N.; Zachleder, V.; Tsuzuki, M.; Kawano, S.; (2013).   Sequential accumulation of starch and lipid induced by sulfur deficiency in chlorella and parachlorella species. Bioresource Technology; 129: 150-155.

Morales-Sánchez; D., Tinoco-Valencia, R.; Kyndt, J.; Martinez, A.; (2013). Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source, Biotechnology for Biofuels; 6: 100-112.

Nigam, S.; Prakash Rai, M.; Sharma, R.; (2011). Effect of Nitrogen on Growth and Lipid Content of Chlorella pyrenoidosa, American Journal of Biochemistry and Biotechnology; 7(3): 124-129.

Pagnanelli, F.; Altimari, P.; Franco, T.; Toro, L.; (2011). Mixotrophic growth of Chlorella vulgaris and Nannochloropsi s oculata: Interaction between glucose and nitrate. Journal of Chemical Technology & Biotechnology; 89(5): 652-661.

Presta, A.; Stillman, M.J.; (1997). Incorporation of copper into the yeast Saccharomyces cerevisiae. Identification of Cu (I)-metallothionein in intact yeast cells. Journal of inorganic biochemistry; 66(4): 231-240.

Rachlin, J.W.L.; Grosso, A.; (1991). The effects of pH on the growth of Chlorella vulgaris and its interactions with cadmium toxicity. Archives of Enviromental  Contamination Toxicol- ogy; 20 (4): 505-8.

Ramanna, L.; Guldhe, A.; Rawat, I.; Bux F.; (2014). The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources, Bioresource Technology; 168: 127-135.

Renaud, S.M.; Parry, D.L.; Luong-Van, T.; Kuo, C.; Padovan, A.; Sammy, N.; (1991). Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology; 3(1): 43-53.

Ribeiro, A.; Tesima, K.; Souza, J.; Yokoya, N.; (2013).  Effects of nitrogen and phosphorus availabilities on growth, pigment, and protein contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). Journal of Applied Phycology; 25(4): 1151-1157.

Rosenberg, J.N.; Kobayashi, N.; Barnes, A.; Noel, E.A.; Betenbaugh, M.J.; Oyler, G.A.; (2014). Comparative Analyses of three Chlorella species in response to light and sugar. Plos One; 9(4): 1-13.

Ruiz, J.; Alvarez, P.; Arbib, Z.; Garrido, C.; Barrag´an, J.; Perales, J.A.; (2011). Effect nitrogen and phosphorus concentration on their removal kinetic treated urban wastewater by chlorella vulgaris, International Journal of Phytoremediation; 13(9): 884-96.

Sayegh, F.A.Q.; Montagenes, D.J.S.; (2011). Temperature shifts induse intraspecific variation in microalgae production and biochemical composition. Bioresource Technology; 102(3): 3007-3013.

Sharma, R.; Singh, G.P.; Sharma, V.K.; (2012). Effects of Culture Conditions on Growth and Biochemical Profile of Chlorella Vulgaris. Journal of Plant Pathology and Microbiology; 3(5) 1000131-5.

Shu, Ch.H.; (2012). Light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of Chemical Technology& Biotechnology; 87(5): 601-607.

Shugarman, P.M.; Appleman, D.; (1996). .Chlorophyll Synthesis in Chlorella II. Effect of Glucose and Light Intensity on the Lag Phase, Plant Physiology; 41(10): 1701-1708.

Singh, S.K.; Bansal, A.; Jha, M.K.; Jain, R.; (2013)., Production of biodiesel from wastewater grown Chlorella minutissima. Indian Journal of Chemical Technology; 20: 341-345.  

Stirk, W.A.; Bálint, P.; Tarkowská, D.; Novák, O.; Maróti, G.; Ljung, K.; Turečková, V.; Strand, M.; Ordög, V.;  Staden, J.; (2014). Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiology and Biochemistry; 79: 66-76.

Watanabe, T.; Ozaki, N.; Iwashita, K.; Fujii, T.; Iefuji, H.; (2008). Breeding of wastewater treatment yeasts that accumulate high concentrations of phosphorus, Applied  Microbiology and Biotechnology; 80(2): 331-338.

Wang, C.; Li, H.; Wang, Q.; Wei, P.; (2010). Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry. Sheng Wu Gong Cheng Xu. Bao;  26 (8): 1074-9

Wellburn, A.R.; (1994).  The spectral determination chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology; 144: 307-313.

Zachariadis, G.A.; Raidou, E.S.; Themelis, D.G.; Stratis, J.A.; (2002). Determination of mineral content of active dry yeast used in pharmaceutical formulations; Journal of Pharmaceutical and Biomedical Analysis; 28(3-4): 463-473.

Zhu, L.; (2015). Biorefinery as a promisin g approach to promote microalgae industry: An innovative framework. Renewable and Sustainable Energy Reviews; 41: 1376-1384.