In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 M. A., Department of Chemistry, Faculty of Science, ‎Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Assistant Professor, Department of Chemistry, Faculty ‎of Science, Shahid Chamran University of Ahvaz, ‎Ahvaz, Iran

3 Assistant Professor, Department of Biology, Faculty of ‎Science, Shahid Chamran University of Ahvaz, ‎Ahvaz, Iran

Abstract

Preparation of scaffolds with special characters for growing of different cells is considered as an important goal of tissue engineering. In this study, polyacrylonitrile (PAN) and its composites with different percentages of Fe (III) metal-organic frameworks (PAN/x%Fe-MOF) were treated with oxygen plasma. The surface chemistry of these compounds was studied using FT-IR spectroscopy. The morphology stability of the nanofibers after cell-scaffold adhesion was investigated by scanning electron microscopy (SEM). Metabolic activity and survival of endothelial cells cultured on scaffolds were evaluated by MTT method. In conclusion, the results of this study showed that PAN/x%Fe-MOF scaffolds, in particular oxygen plasma treated scaffolds, provide a suitable support for binding and proliferation of endothelial cells due to their high biocompatibility.

Keywords

Agusta, M.K.; Saputro, A.G.;‎Tanuwijaya, V.V.; Hidayat, N.N.; ‎Dipojono, H.K. (2017). Hydrogen Adsorption on ‎Fe-based Metal Organic Frameworks: DFT Study,Procedia Engineering; ‎‎170: 136-140‎‏.‏
Asiabi, M.; Mehdinia, A.; Jabbari, ‎ A. (2015). Preparation of water stable methyl-‎modified metal-organic framework-‎‎5/polyacrylonitrile composite ‎nanofibers via electrospinning and ‎their application for solid-phase ‎extraction of two estrogenic drugs in ‎urine samples, Journal of Chromatography A; 1426: 24-‎‎32‎‏.‏
‏Boland, E.D.; Wnek, G.E.; ‎Simpson, D.G.; Pawlowski, K.J.; ‎Bowlin, G.L. (2001). Tailoring tissue engineering scaffolds using electrostatic ‎processing techniques: A study of ‎poly (glycolic acid) electrospinnig, ‎Journal of Macromolecular Science, ‎Part A; 38: 1231-1243‎‏.‏
Casasola, R.; Thomas, N.L.; Trybala, A.; Georgiadou, S. (2014). Electrospun poly ‎lactic acid (PLA) fibres: Effect of ‎different solvent systems on fibre ‎morphology and diameter. Polymer; ‎‎55: 4728-4737‎‏.‏
Chen, X.; Zhang, M.; Li, S.; Li, L.; ‎Zhang, L.; Wang, T.; Yu, M.; Mou, Z.; ‎Wang, C. ‎(2017). Facile synthesis of polypyrrole@metal-‏organic  framework core-shell ‎nanocomposites for dual-mode ‎imaging and synergistic chemo-‎photothermal therapy of cancer cells, ‎Journal of Materials Chemistry B; 5: 1772-1778‎‏.‏
Chowdhury, M. (2017). Metal-Organic-‎Frameworks for biomedical ‎applications in drug delivery, and as ‎MRI contrast agents, Journal of ‎Biomedical Materials Research Part ‎A; 105: 1184-1194.‎
Dai, X.; Cao, Y.; Shi, X.; Wang, X. (2016). ‎Non-isothermal crystallization ‎kinetics, thermal degradation ‎behavior and mechanical properties of ‎poly (lactic acid)/MOF composites ‎prepared by melt-blending methods, ‎RSC Advances; 6: 71461-‎‎71471.
Gonen, S.; Elbaz, L. (2018). Comparison of ‎new metal organic framework-based ‎catalysts for oxygen reduction ‎reaction, Data in brief; 19: 281-‎‎287‎‏.‏
Heydarkhan-Hagvall, S.; Schenke-‎Layland, K.; Dhanasopon, A.P.; Rofail, F.; Smith, H.; Wu, B.M.; Shemin, R.; ‎Beygui, R.E.; MacLellan, W.R. ‎(2008). Three-‎dimensional electrospun ECM-based ‎hybrid scaffolds for cardiovascular ‎tissue engineering, Biomaterials; 29: 2907-2914‎‏.‏
Horcajada, P.; Serre, C.; Maurin, ‎ G.; Ramsahye, N. A.; Balas, F.; Vallet-‎Regí, M.; et al. (2008). Flexible Porous Metal-‎Organic Frameworks for a Controlled ‎Drug Delivery. Journal of American ‎Chemical Society; 130: 6774-‎‎6780.  ‎
Jun, I.; Han, H.-S.; Edwards, J.R.; ‎Jeon, H. (2018). Electrospun Fibrous Scaffolds ‎for Tissue Engineering: Viewpoints ‎on Architecture and Fabrication, ‎International journal of molecular ‎sciences; 19: 745‎‏.‏
Kang, Y.; Chen, P.; Shi, X.; Zhang, G.; Wang, C. (2018). Multilevel structural stereocomplex polylactic ‎acid/collagen membranes by pattern ‎electrospinning for tissue ‎engineering, Polymer; 156: ‎250-260‎‏.‏
Kim, H.; Jalili, R.; Spinks, G.M.; Wallace, G.G.; Kim, S.J. (2017). High-strength ‎graphene and polyacrylonitrile ‎composite fiber enhanced by surface ‎coating with polydopamine, ‎Composites Science and Technology; ‎‎149: 280-285‎‏.‏
Kishimoto, Y.; Morikawa, H.; ‎Yamanaka, S.; Tamada, Y. (2017). Electrospinning of silk fibroin from ‎all aqueous solution at low ‎concentration, Materials Science and ‎Engineering: C; 73: 498-506‎‏.‏
Konarov, A.; Bakenov, Z.; Yashiro, H.‎; Sun, Y.-K.; Myung, S.-T. (2017). Effect‏ ‏of ‎carbon-sulphur bond in a ‎sulphur/ dehydrogenated polyacrylonitrile/ reduced graphene ‎oxide composite cathode for lithium-‎sulphur batteries, Journal of Power ‎Sources; 355: 140-146‎‏.‏
Li, W.; Yang, Z.; Zhang, G.; Fan, Z.; Meng, Q.; Shen, C.; Gao, C. (2014). Stiff metal-‎organic framework-polyacrylonitrile ‎hollow fiber composite membranes ‎with high gas permeability, Journal of ‎Materials Chemistry A; 2: ‎‎2110-2118‎‏.‏
Matthews, J.A.; Wnek, G.E.; ‎Simpson, D.G.; Bowlin, G.L. (2002). Electrospinning of Collagen Nanofibers, Biomacromolecules; 3: 232-238‎‏.‏
Mohamadali, M.; Irani, S.; ‎Soleimani, M.; Hosseinzadeh, ‎ S. (2017). PANi/PAN copolymer as scaffolds for ‎the muscle cell-like differentiation of ‎mesenchymal stem cells, Polym. Adv. ‎Technol.; 28: 1078-1087.‎
Pappa, A. M.; Karagkiozaki, V.; ‎Krol, S.; Kassavetis, S.; Konstantinou, ‎ D.; Pitsalidis, C.; Tzounis, L.; ‎Pliatsikas, N.‎; Logothetidis, S. ‎‎(2015). Oxygen-plasma-modified ‎biomimetic nanofibrous scaffolds for ‎enhanced compatibility of ‎cardiovascular implants. Beilstein ‎journal of nanotechnology; 6(1): 254-262.‎
Ribeiro, R. F.; Pardini, L. C.; ‎Alves, N. P.; Júnior, B.; Rios, C. A. (2015). Thermal ‎Stabilization study of polyacrylonitrile fiber obtained by extrusion, Polimeros; 25: 523-‎‎530.‎
Riccò, R.; Liang, W.; Li, S.; ‎Gassensmith, J.J.; Caruso, F.; Doonan, C.‎; Falcaro, P. (2018). Metal-Organic ‎Frameworks for Cell and Virus ‎Biology: A Perspective, ACS Nano; ‎‎12: 13-23‎‏.‏
Tian, J.; Liu, Q.; Shi, J.; Hu, J.; ‎Asiri, A.M.; Sun, X.; He, Y. (2015).  Rapid, sensitive, ‎and selective fluorescent DNA ‎detection using iron-based metal-‎organic framework nanorods:‎synergies of the metal center and ‎organic linker, Biosensors and ‎Bioelectronics; 71: 1-6.‎
Zhou, H.-C.; Long, J.R.; Yaghi,‎ O.M. ‎‎(2012).  Introduction to Metal-Organic ‎Frameworks, Chemical Reviews; 112: 673-674.‎‏