با همکاری مشترک دانشگاه پیام نور و انجمن فیزیولوژی و فارماکولوژی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه بیماری‌های داخلی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران

2 استاد، گروه علوم درمانگاهی، دانشکده دامپزشکی دانشگاه شهرکرد، شهرکرد، ایران

3 دانشیار، گروه علوم درمانگاهی، دانشکده دامپزشکی دانشگاه شهرکرد، شهرکرد، ایران

چکیده

هدف از مطالعه حاضر مقایسه اثرات استفاده خوراکی نانوذرات سلنیوم و سلنیت­سدیم بر روی فاکتورهای خون محیطی در گوسفند است. برای این منظور 15 راس گوسفند به‌طور تصادفی به سه گروه تقسیم شدند و به گروه یک نانوذرات سلنیوم (1میلی­گرم/کیلوگرم)، تهیه شده به روش احیای اکسید سلنیوم با استفاده از اسید آسکوربیک، به گروه دو سلنیت­سدیم (1میلی­گرم/کیلوگرم) و به گروه سه به عنوان گروه کنترل آب مقطر استریل برای 10روز متوالی خورانده شد. سپس نمونه خون از سیاهرگ وداج تمامی گوسفندها در لوله­های حاوی هپارین در روزهای 0، 10، 20 و30 جمع­آوری و بر روی آنها میزان فاکتورهای خونی شامل میزان هماتوکریت، تعداد گلبول‌های قرمز، غلظت هموگلوبین، تعداد گلبول‌های سفید، تعداد پلاکت­ها و میزان پروتئین تام توسط دستگاه اتوآنالایزر تعیین گردید. جهت شمارش تفریقی سلول­ها، بعد از تهیه اسمیر شعله شمعی، توسط متانول فیکس شد و با گیمسا به مدت 20 دقیقه رنگ­آمیزی گردید. سپس تعداد سلول­های نوتروفیل، ائوزینوفیل، بازوفیل، مونوسیت و لنفوسیت از طریق لنز شماره 100 میکروسکوپ نوری و روغن سدر مورد شمارش تفریقی قرار گرفتند. بررسی آماری در میزان هماتوکریت، گلبول‌های­قرمز، هموگلوبین، پلاکت، فیبرینوژن­ و پروتئین تام در بین سه گروه، در روزهای مختلف اختلاف معنی­داری را نشان نداد. اما بررسی میزان گلبول‌های­سفید در گروه یک در روز 30 با روز صفر و مقایسه میانگین­ها در گروه یک با گروه کنترل در روز 30 افزایش معنی­داری را نشان داد. همچنین میزان نوتروفیل­ها در گروه یک در روز 30 با روز 10 و مقایسه میانگین­ها در گروه یک با گروه­های دو و کنترل در روز 10 افزایش معنی­دار را مشخص کرد. بررسی میزان لنفوسیت­ها نشان داد مقایسه میانگین­ها در گروه یک با گروه­های دو و کنترل در روز 10 کاهش معنی­داری وجود دارد. این مطالعه مشخص کرد نانوذرات سلنیوم در مقایسه با سلنیت­سدیم، تعداد گلبول‌های­سفید و نوتروفیل­های­خون را با شدت بیشتری افزایش می­دهد.
 

کلیدواژه‌ها

Abbas, AK.; Lichtman, A.H.; Pillai, S.; (2012). Cellular and Molecular Immunology. (7th ed). Elsevier. Philadelphia, USA. p. 55-88.
Arvillomi, H.; Poikonen, K.; Jokinen, I.; (1983). Selenium and Immune function in humans. Infection Immunology; 41: 185-189.
Bickhardt, K.; Ganterm, M.; Sallmann, P.; (1999). Investigation of the manifestation of vitamin E and selenium deficiency in sheep and goats. Dtsch Tierarztl Wochenschr; 106: 242-247.
Fraga, C.G.; Ariass, R.F.; Llesuy, S.F.; (1987). Effect of Vitamin E and Se deficiency on rat liver chemiluminescence. Biochemical Journal; 242: 383-392.
Hodgson, J.C.; Watkins, C.A.; Bayne, C.W.; (2006). Contribution of respiratory burst activity to innate immune function and the effect of disease status and agent on chemiluminescence responses by ruminant phagocytes in vitro. Veterinary Immunology Immunopathology; 112: 12-23.
Huang, B.; Zhang, J.; Hou, J.; Chen, C.; (2003). Free radical scavenging efficiency of ano-Se in vitro. Free Radical Biology and Medicine; 35: 805-813.
Jain, N.C.; (1986). Schalm’s Veterinary Hematology. (4th ed). Lea & Febiger Publication. Philadelphia, USA. p. 381-383.
Kojouri, G.A.; Sadeghian, S.; Mohebbi, A.; Mokhber Dezfouli, M.R.; (2012). The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep. Biological Trace Elemental Research; 146: 160-6.
Kojouri, G.A.; Sharifi, S.; (2013). Preventing Effects of Nano-Selenium Particles on Serum Concentration of Blood Urea Nitrogen, Creatinine, and Total Protein during Intense Exercise in Donkey. Journal of Equine Veterinary Science; 33: 597-600.
Lessard, M.; Yang, W.C.; Elliott, G.S.; (1991). Cellular immune response in Pigs fed a vitamin E & Se Deficient Diet. Journal of Animal Science; 69: 1575-1582.
Li, H.; Zhang, J.; Wang, T.; Luo, W.; Zhou, Q.; Jiang, J.; (2008). Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquatic Toxicology; 89: 251-256.
Lumsden, J.H.; Valli, V.E.O.; McSherry, B.J.; (1974). The Piromen test as an assay of bone marrow Granolocyte reserves in the calf. I. Studies on bone marrow and peripheral blood leukocytes. The Canadian Journal of Comparative Medicine; 38: 56-64.
Nandra, R.K.; (1997). Nutrition and the immune system: an introduction. The American Jornal of Clinical Nutrition; 66: S460-S463.
Pighetti, G.M.; Eskew, M.L.; Reddy, C.C.; Sordillo, L.M.; (1998). Selenium and vitamin E deficiency impair transferrin receptor internalization but not IL-2, IL-2 receptor, or transferrin receptor expression. Journal of Leukocyte Biology; 63: 131-137.
Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D.; (2007). Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats, (10th ed). Elsevier. Spain. p.552-557.
Roitt, I.P.; Martin, S.; Burton, D.; (2006). Roitt,s Essential Immunology, (11th ed). Wiley-Blackwell. England. p. 115-119.
Sadeghian, S.; Kojouri, GA.; Mohebi, A.; (2012). Nanoparticles of Selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biological Trace Elemental Research; 146: 302-8.
Smith, B.P.; (2015). Large Animal Internal Medicine, (5th ed). Elsevier. Missouri. USA. p. 1062-1064.
Tizard, I.R.; (2013). Veterinary immunology. (9th ed). Elsevier. China. p. 30-40.
Van Vleet, J.F.; (1982). Comparative efficacy of five supplementation procedures to control selenium-vitamin E deficiency in swine. American Journal of Veterinary  Research; 43: 1180-1186.
Jacobs, R.M.; Smith, H.E.; Whetstone, C.A.; Suarez, D.L.; Jefferson, B.; Valli, V.E.O.; (1994). Haematological and lymphocyte subset analyses in sheep inoculated with bovine immunodeficiency-like virus.  Veterinary  Research Communication; 18: 471-482.
Wang, H.; Zhang, J.; Yu, H.; (2007). Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology and Medicine; 42: 1524-1533.
Xin, Z.; Waterman, D.F.; Hemken, R.W.; (1991). Effect of copper status on neutrophil Function in steers. Journal of Dairy Science; 74: 3078-3085.
Zhang, J.; Wang, H.; Bao, Y.; Zhang, L.; (2004). Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Science; 75: 237-244.
Zhang, J.S.; Wang, H.L.; Yan, X.X.; Zhang, L.D.; (2005). Comparison of short-term toxicity between nano-Se and selenite in mice. Life Science; 76: 1099-1109.
Zhang, J.S.; Wang, X.F.; Xu, T.W.; (2008). Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicology Science; 101: 22-31.