In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 M.A., Department of Animal Sciences and Marine Biology, ‎Faculty of Life Sciences and Biotechnology, Shahid Beheshti ‎University, Tehran, Iran

2 Assistant Professor, Department of Animal Sciences and Marine ‎Biology, Faculty of Life Sciences and Biotechnology, Shahid ‎Beheshti University, Tehran, Iran‎

3 Assistant Professor, Department of Animal Biology, School of ‎Biology, College of Science, University of Tehran, Tehran, Iran‎

4 Assistant Professor, Department of Stem Cells and ‎Developmental Biology, Cell Science Research Center, Royan ‎Institute for Stem Cell Biology and Technology, ACECR, Tehran, ‎Iran

Abstract

Cancer is the result of the overgrowth of malignant cells that have the ability to spread to other parts of the body. Dichloroacetate (DCA) has been considered as a new drug to control various cancers. The effects of stem cells or their conditioned media (CM) on the treatment or control of some cancers have also been shown. In this study, human adipose-derived mesenchymal stem cells (h-ADMSCs) and breast cancer cell line 4T1 were first treatedwith different concentrations of DCA and their viability was assessed by MTT assay and 1mM were selected for CM collection. h-ADMSCs with four groups including groups with no FBS media, ± DCA (-FBS /±1mM DCA) and groups with 5% FBS ± DCA (+5%FBS/±1mMDCA) were treated to prepare CM. Then the viability, colony forming potential, cell cycle profile and apoptosis of CM-treated 4T1 cells were investigated. The results showed that CM in the -FBS/+DCA group decreased the viability (P-Value <0.05) and increased the proliferation of 4T1 cells, compared to the -FBS/-DCA group, respectively. Compared to +5%FBS/-DCA group, CM of +5% FBS/+DCA were able to increase viability and proliferation of 4T1 cells. Also, CM of the four studied groups caused changes in the rate of apoptosis and cell cycle profile of 4T1 cells. It seems that, DCA can increase the viability and proliferation of 4T1 breast cancer cells by affecting on thecomposition of mesenchymal stem cells CM.

Keywords

Carbine, N. E.; Lostumbo, L.; Wallace, J.; Ko, H. (2018). Risk-reducing mastectomy for the prevention of primary breast cancer. Cochrane Database Syst. Rev.; 4 doi: 10.1002/14651858.CD002748.pub4
Senapati, S. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. November 2017, 1-19. doi: 10.1038/s41392-017-0004-3.
Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. (2016). The role of oxidative stress on breast cancer development and therapy. Tumor Biol.; 37(4): 4281-4291, 2016, doi: 10.1007/s13277-016-4873-9.
Pucci, C.; Martinelli, C.; Ciofani, G. (2019). Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 3: 1-26.  doi: 10.3332/ecancer.2019.961.
Tataranni, T.; Piccoli, C. (2019). Dichloroacetate (DCA) and Cancer: An Overview towards Cl9inical Applications. Oxid. Med. Cell. Longev.; 2019: 1-14. doi: 10.1155/2019/8201079.
Kato, M.; Li, J.; Chuang, J.L.;  Chuang, D.T. (2007). Distinct Structural Mechanisms for Inhibition of Pyruvate Dehydrogenase Kinase Isoforms by AZD7545, Dichloroacetate, and Radicicol. Structure; 15(8): 992-1004. doi: 10.1016/j.str.2007.07.001.
Maj, M.; Kokocha, A.; Bajek.; Drewa, T. (2018). The interplay between adipose-derived stem cells and bladder cancer cells. Sci. Rep.; 8(1), 85-92. doi: 10.1038/s41598-018-33397-9.
Noverina, R.; Widowati, W.; Ayuningtyas, W.; Kurniawan, D. (2019). Growth factors profile in conditioned medium human adipose tissue-derived mesenchymal stem cells (CM-hATMSCs). Clin. Nutr. Exp.; 24: 34-44. doi: 10.1016/j.yclnex.2019.01.002.
Aravindhan, S.; Ejam, S. S.; Lafta, M. H.;  Markov, A. A.; Yumashev, V.; Ahmadi,  M. (2021). Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature. Cancer Cell Int.; 21(1): 1-15. doi: 10.1186/s12935-021-01836-9.
Wu, Y. C.; Wang, W.T.; Huang, L.J.; Cheng, R.Y. (2019) Differential response of non-cancerous and malignant breast cancer cells to conditioned medium of adipose tissue-derived stromal cells (Ascs). Int. J. Med. Sci.; 16(6): 893-901. doi: 10.7150/ijms.27125.
He, N.; Kong, Y.; Lei, X.; Liu, Y. (2018). MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis.; 9(10), doi: 10.1038/s41419-018-0949-3.
Niewisch, M. R.; Kuçi, Z.; Wolburg, H.; Sautter, M. (2012). Influence of dichloroacetate (DCA) on lactate production and oxygen consumption in neuroblastoma cells: Is DCA a suitable drug for neuroblastoma therapy?. Cell. Physiol. Biochem.; 29(3): 373-380. doi: 10.1159/000338492.
Franken, N. A. P.; Rodermond, H. M. J.; Stap, J.; Haveman.; van Bree, C. (2006). Clonogenic assay of cells in vitro. Nat. Protoc.; 1(5): 2315-2319. doi: 10.1038/nprot.2006.339.
Bhang, S. H.; Lee, S.; Shin, J. Y.; Lee, T. J.; Jang, H. K.; Kim, B. S. (2014). Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Mol. Ther.; 22(4): 862-872. doi: 10.1038/mt.2013.301.
Li, L.; Ngo, H.T.; Hwang, U.; Wei, X. (2020). Conditioned medium from human adipose-derived mesenchymal stem cell culture prevents uvb-induced skin aging in human keratinocytes and dermal fibroblasts. Int. J. Mol. Sci.; 21(1): 1-11. doi: 10.3390/ijms21010049.
Schweizer, R.; Tsuji, W.; Gorantla,V. S.; Marra, K. G.; Rubin, J. P.; Plock, J. A. (2015). The role of adipose-derived stem cells in breast cancer progression and metastasis. Stem Cells Int.; 2015, doi: 10.1155/2015/120949.
Yu, X.; Su. B.; Ge, P.; Wang, Z. (2015). Human adipose derived stem cells induced cell apoptosis and s phase arrest in bladder tumor. Stem Cells Int.; 2015, doi: 10.1155/2015/619290.
Gwendal, L.; Paula Y, L. (2016). Recent discoveries concerning the tumor- mesenchymal stem cell interactions. Biochim. Biophys. Acta - Rev.; 1866(2): 290-299. doi: 10.1016/j.bbcan.2016.10.004.
Stockwin, L. H.; Wu, S.X.; Borgel, S.; Hanckok, C. (2010). Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. Int. J. Cancer.; 127(11): 2510-2519. doi: 10.1002/ijc.25499.
Madhok, B. M.; Yeluri, S.; Perry, S. L.; Hughes, T. A.; Jayne, D. G. (2010). Dichloroacetate induces apoptosis and cell-cycle arrest in colorectal cancer cells. Br. J. Cancer.; 102(12): 1746-1752. doi: 10.1038/sj.bjc.6605701.
Florio, R., Lellis, L.D.; Veschi, S.; Verginelli, F. (2018). Effects of dichloroacetate as single agent or in combination with GW6471 and metformin in paraganglioma cells. Sci. Rep.; 8(1): 1-14. doi: 10.1038/s41598-018-31797-5.
Teo, G. Y.; Rasedee , A.; AL-Haj, A.; Beh, C.Y.; How, C.W. (2020). Effect of fetal bovine serum on erythropoietin receptor expression and viability of breast cancer cells. Saudi J. Biol. Sci.; 27(2): 653-658. doi: 10.1016/j.sjbs.2019.11.032.