Artola, A.; Kamal, A.; Ramakers, G.M.; Biessels, G.J.; Gispen, WH.; (2005). Diabetes mellitus concomitantly facilitates the induction of long-term depression and inhibits that of Long-term potentiation in hippocampus. Eur J Neurosci; 22-178: 169.
Ataie, A.; Sabetkasaei, M.; Haghparast, A.; Moghaddam, A.H.; Ataee, R.; Moghaddam, S.N.; (2010). Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain. J Med Food; 13: 821-6.
Bassani, T.B.; Turnes, J.M.; Moura, E.L.R.; Bonato, J.M.; Cóppola-Segovia, V.; Zanata, S.M.; Oliveira, R.; Vital, M. (2017). Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis an neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav. Brain Res.; 335: 41-54.
Baydas, G.; Nedzvetskii, V.S.; Nerush, P.A.; Kirichenko, S.V.; Yoldas, T. (2003). Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci.; 73: 1907-1916.
Biessels, G.J.; Smale, S.; Duis, S.E.; Kamal, A.; Gispen, W.H. (2000). The effect of gamma-linolenic acid-alpha-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. J Neurol Sci.; 182: 99-106.
Biessels, G.J.; ter Laak, M.P.; Kamal, A.; Gispen, W.H. (2005). Effects of the Ca2+ antagonist nimodipine on functional deficits in the peripheral and central nervous system of Streptozotocin-diabetic rats. Brain Res.; 93-1035: 86.
Dairam, A.; Fogel, R.; Daya, S.; Limson, J.L. (2008). Antioxidant and iron-binding properties of curcumin, capsaicin, and Sallylcysteine reduce oxidative stress in rat brain homogenate. J Agric Food Chem.; 56(9): 3350-6.
Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Meza-Toledo, J.A.; Mendoza-Muñoz, N.; González-Torres, M.; Florán B.; et al. (2019). Formulations of curcumin nanoparticles for brain diseases. Biomolecules; 9(2): 56.
Geijselaers, S.; Sep, S.; Claessens, D.; Schram, M.T.; Van, M.B.; Henry, R.; et al. (2017). The role of hyperglycemia, insulin resistance, and blood pressure in diabetes-associated differences in cognitive performance-the Maastricht Study. Diabetes Care; 40(11):170330.
Hosseini-Zare, M.S.; Sarhadi, M.; Zarei, M.; Thilagavathi, R.; Selvam, C. (2020). Synergistic effects of curcumin and its analogs with other bioactive compounds: a comprehensive review. Eur J Med Chem.; 210:113072.
Jackson-Guilford, J.; Leander, J.D.; Nisenbaum, L.K. (2000). The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci Lett.; 293: 91-94.
Lupien, S.B.; Bluhm, E.J.; Ishii, D.N. (2003). Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res.; 74: 512-523.
Mayer, G.; Nitsch, R.; Hoyer, S. (1990). Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res.; 100-532:95.
Nitta, A.; Murai, R.; Suzuki, N.; Ito, H.; Nomoto, H.; Katoh, G.; Furukawa, Y.; et al. (2002). Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol.; 701-24:695.
Parihar, M.S.; Chaudhary, M.; Shetty, R.; Hemnani, T. (2004). Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci.; 11: 397-402
Patumraj, S.; Wongeakin, N.; Sridulyakul, P.; Jariyapongskul, A.; Futrakul, N.; Bunnag, S. (2006). Combined effects of curcumin and vitamin C to protect endothelial dysfunction in the Iris tissue of STZ-induced diabetic rats. Clin Hemorheol Microcirc.; 35(4):481-9.
Reagan, L.P.; McEwen, B.S. (2002). Diabetes, but not stress, reduces neuronal nitric oxide synthase expression in rat hippocampus: implications for hippocampal synaptic plasticity. Neuroreport; 13: 1801-1804.
Scartezzini, P.; Speroni, E. (2000). Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol; 71:23-43.
Shalimova, A.; Graff, B.G.; Aseck, D.; Wolf, J.; Sabisz, A.; Szurowska, E.; Jodzio, K.; Narkiewicz, K. (2019). Cognitive Dysfunction in Type 1 Diabetes Mellitus. J. Clin. Endocrinol. Metab.; 104: 2239-2249.
Sharma, S.; Kulkarni, S.K.; Agrewala, J.N.; Chopra, K. (2006). Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pharmacol.; 536(3): 256-61.
Sharma, S.; Ying, Z.; Gomez-Pinilla, F. (2010). A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol.; 226 (1): 9-191.
Shukla, P.K.; Khanna, V.K.; Ali, M.M.; Khan, M.Y.; Srimal, R.C. (2008). Anti-ischemic effect of curcumin in rat brain. Neurochem Res.; 33: 1036-43.
Sima, A.A.; Li, Z.G. (2005). The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats. Diabetes.; 1505-54: 1497.
Stratton, I.M.; Adler, A.I.; Neil, A.W. (2000). Association of Glycaemia with macrovascular and microvascular complications of type 2 diabetes –ukpds35: Prospective observational study BMJ; 321:405-12.
Tripathi, B.K.; Srivastava, A.K. (2006). Diabetes mellitus: complications and therapeutics. Med Sci Monit.; 47-130.
Wang, Y.; Yu, C.; Pan, Y.; Yang, X.; Huang, Y.; Feng, Z.; Li, X.; Yang, S.; Liang, G. (2011). A Novel Synthetic Mono-Carbonyl Analogue of Curcumin, A13, Exhibits Anti-Inflammatory effects In vivo by Inhibition of Inflammatory Mediators. Inflammation. in press.