In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Author

Assistant Professor, Department of Biology, Marand Branch, ‎Islamic Azad University, Marand, Iran

Abstract

Diabetes disrupts processes related to learning, memory, and cognition. Considering the potential anti-diabetic effect of the medicinal plant turmeric (curcumin) and its enhancing effect on memory and learning, in this research, the effect of inter peritoneal administration of the curcumin on learning and memory in diabetic rats was investigated. In this study, the male rats were divided into five groups: control, control treated with curcumin 50 mg / kg, diabetic and diabetic treated with curcumin 10 and 50 mg/kg. Curcumin was administered for five weeks after seven days of streptozotocin 60mg/kg interparietal injection and the passive avoidance task was assessed through the operation. Streptozotocin injection significantly increased blood glucose and markedly decreased both STL1 (the short memory) and STL2 (the long memory) in the avoidance learning test. Chronic administration of curcumin as an active ingredient in turmeric significantly increased short-term and long-term memory in the diabetic groups. Therefore, chronic use of cinacurcumin reduced memory and learning impairment and enhanced the capability of memory and recall in diabetic rats.

Keywords

Artola, A.; Kamal, A.; Ramakers, G.M.; Biessels, G.J.; Gispen, WH.; (2005). Diabetes mellitus concomitantly facilitates the induction of long-term depression and inhibits that of Long-term potentiation in hippocampus. Eur J Neurosci; 22-178: 169.
Ataie, A.; Sabetkasaei, M.; Haghparast, A.; Moghaddam, A.H.; Ataee, R.; Moghaddam, S.N.; (2010). Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain. J Med Food; 13: 821-6.
Bassani, T.B.; Turnes, J.M.; Moura, E.L.R.; Bonato, J.M.; Cóppola-Segovia, V.; Zanata, S.M.; Oliveira, R.; Vital, M. (2017). Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis an neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav. Brain Res.; 335: 41-54.
Baydas, G.; Nedzvetskii, V.S.; Nerush, P.A.; Kirichenko, S.V.; Yoldas, T. (2003). Altered expression of NCAM in hippocampus and cortex may underlie memory and learning deficits in rats with streptozotocin-induced diabetes mellitus. Life Sci.; 73: 1907-1916.
 Biessels, G.J.; Smale, S.; Duis, S.E.; Kamal, A.; Gispen, W.H. (2000). The effect of gamma-linolenic acid-alpha-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. J Neurol Sci.; 182: 99-106.
 Biessels, G.J.; ter Laak, M.P.; Kamal, A.; Gispen, W.H. (2005). Effects of the Ca2+ antagonist nimodipine on functional deficits in the peripheral and central nervous system of Streptozotocin-diabetic rats. Brain Res.; 93-1035: 86.
 Dairam, A.; Fogel, R.; Daya, S.; Limson, J.L. (2008). Antioxidant and iron-binding properties of curcumin, capsaicin, and Sallylcysteine reduce oxidative stress in rat brain homogenate. J Agric Food Chem.; 56(9): 3350-6.
Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Meza-Toledo, J.A.; Mendoza-Muñoz, N.; González-Torres, M.; Florán B.; et al. (2019). Formulations of curcumin nanoparticles for brain diseases. Biomolecules; 9(2): 56.
Geijselaers, S.; Sep, S.; Claessens, D.; Schram, M.T.; Van, M.B.; Henry, R.; et al. (2017). The role of hyperglycemia, insulin resistance, and blood pressure in diabetes-associated differences in cognitive performance-the Maastricht Study. Diabetes Care; 40(11):170330.
Hosseini-Zare, M.S.; Sarhadi, M.; Zarei, M.; Thilagavathi, R.; Selvam, C. (2020). Synergistic effects of curcumin and its analogs with other bioactive compounds: a comprehensive review. Eur J Med Chem.; 210:113072.
Jackson-Guilford, J.; Leander, J.D.; Nisenbaum, L.K. (2000). The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neurosci Lett.; 293: 91-94.
Lupien, S.B.; Bluhm, E.J.; Ishii, D.N. (2003). Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res.; 74: 512-523.
Mayer, G.; Nitsch, R.; Hoyer, S. (1990). Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res.; 100-532:95.
Nitta, A.; Murai, R.; Suzuki, N.; Ito, H.; Nomoto, H.; Katoh, G.; Furukawa, Y.; et al. (2002). Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol.; 701-24:695.
Parihar, M.S.; Chaudhary, M.; Shetty, R.; Hemnani, T. (2004). Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci.; 11: 397-402
Patumraj, S.; Wongeakin, N.; Sridulyakul, P.; Jariyapongskul, A.; Futrakul, N.; Bunnag, S. (2006). Combined effects of curcumin and vitamin C to protect endothelial dysfunction in the Iris tissue of STZ-induced diabetic rats. Clin Hemorheol Microcirc.; 35(4):481-9.
Reagan, L.P.; McEwen, B.S. (2002). Diabetes, but not stress, reduces neuronal nitric oxide synthase expression in rat hippocampus: implications for hippocampal synaptic plasticity. Neuroreport; 13: 1801-1804.
Scartezzini, P.; Speroni, E. (2000). Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol; 71:23-43.
Shalimova, A.; Graff, B.G.; Aseck, D.; Wolf, J.; Sabisz, A.; Szurowska, E.; Jodzio, K.; Narkiewicz, K. (2019). Cognitive Dysfunction in Type 1 Diabetes Mellitus. J. Clin. Endocrinol. Metab.; 104: 2239-2249.
Sharma, S.; Kulkarni, S.K.; Agrewala, J.N.; Chopra, K. (2006). Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pharmacol.; 536(3): 256-61.
Sharma, S.; Ying, Z.; Gomez-Pinilla, F. (2010). A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp Neurol.; 226 (1): 9-191.
Shukla, P.K.; Khanna, V.K.; Ali, M.M.; Khan, M.Y.; Srimal, R.C. (2008). Anti-ischemic effect of curcumin in rat brain. Neurochem Res.; 33: 1036-43.
Sima, A.A.; Li, Z.G. (2005). The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats. Diabetes.; 1505-54: 1497.
Stratton, I.M.; Adler, A.I.; Neil, A.W. (2000). Association of Glycaemia with macrovascular and microvascular complications of type 2 diabetes –ukpds35: Prospective observational study BMJ; 321:405-12.
Tripathi, B.K.; Srivastava, A.K. (2006). Diabetes mellitus: complications and therapeutics. Med Sci Monit.; 47-130.
Wang, Y.; Yu, C.; Pan, Y.; Yang, X.; Huang, Y.; Feng, Z.; Li, X.; Yang, S.; Liang, G. (2011). A Novel Synthetic Mono-Carbonyl Analogue of Curcumin, A13, Exhibits Anti-Inflammatory effects In vivo by Inhibition of Inflammatory Mediators. Inflammation. in press.