In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Ph.D. Student, Department of Biology, Faculty of science, Payame Noor University, Tehran, Iran

2 Assistant Professor, Department of Biology, Faculty of science, ‎Payame Noor University, Tehran, Iran‎

3 Associate Professor, Biotechnology Research Center, Venom ‎and Biotherapeutics Molecules Laboratory, Pasteur ‎Institute of ‎Iran, Tehran, Iran

4 Assistant Professor, Virology Department, Pasteur Institute of ‎Iran, Tehran, Iran

Abstract

Among Iranian venomous snakes, the most important groups causing envenomation are Naja Naja Oxiana, Echis,Vipera albicornuta, Vipera latifii Mertens, pseudocerastes peersicus and Vipera lebetina. Many researchers believe natural snake venom toxins are containing several pharmacologically active components that could be of potential therapeutic value. In the past, studies have shown that some neurotoxic fractions of snake venom interfere with some infectious and non-infectious diseases such as cancer. we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC) using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity effect of crude venom and fractions on Vero cells were demonstrated using 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and adhesion assay. The aim of this study is to investigate the effects of Macrovipera lebetina (one of the native snakes of many parts of iran) , in order to create an appropriate animal cell culture model to evaluate the effects of protein complexes on diseases such as viral infections.

Keywords

Adukauskienė, D.; Varanauskienė, E.; Adukauskaitė, A. (2011). Venomous snakebites. Medicina47(8): 461.
Ammerman, N. C.; Beier‐Sexton, M.; Azad, A.F. (2008). Growth and maintenance of Vero cell lines. Current protocols in microbiology11(1): A-4E.
Barchan, D.; Kachalsky, S.; Neumann, D.; Vogel, Z.; Ovadia, M.; Kochva, E.; Fuchs, S. (1992). How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proceedings of the National Academy of Sciences89(16): 7717-7721.
Bawaskar, H.S.; Bawaskar, P.H. (2015). Snake bite poisoning. Journal of Mahatma Gandhi Institute of Medical Sciences20(1): 5.
Bazaa, A. ; Luis, J. ; Srairi-Abid, N. ; Kallech-Ziri, O. ; Kessentini-Zouari, R. ; Defilles, C. ; ... Marrakchi, N. (2009). MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biology28(4): 188-193.
Dehghani, R.; Mehrpour, O.; Shahi, M.P.; Jazayeri, M.; Karrari, P.; Keyler, D.; Zamani, N. (2014). Epidemiology of venomous and semi-venomous snakebites (Ophidia: Viperidae, Colubridae) in the Kashan city of the Isfahan province in Central Iran. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences19(1): 33.
Dutertre, S.; Nicke, A.; Tsetlin, V.I. (2017). Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology; 127: 196-223.
Farzad, R.; Gholami, A.; Roodbari, N. H.; & Shahbazzadeh, D. (2020). The anti-rabies activity of Caspian cobra venom. Toxicon186: 175-181.
Fatima, L.; Fatah, C. (2014). Pathophysiological and pharmacological effects of snake venom components: molecular targets. J. Clin. Toxicol4(190): 2161-0495.
Jackson, A.; Rossiter, J. (1997). Apoptosis plays an important role in experimental rabies virus infection. Journal of virology; 71(7): 5603-5607.
Kang, T.S.; Georgieva, D.; Genov, N.; Murakami, M.T.; Sinha, M.; Kumar, R.P.; ... Vrielink, A. (2011). Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. The FEBS journal278(23): 4544-4576.
Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; ... de Silva, H.J. (2008). The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med5(11): e218.
Koh, D.; Armugam, A.; Jeyaseelan, K. (2006). Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences CMLS; 63(24): 3030-3041.
Laemmli, UK. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4, 15; 227(5259): 680-5.
Lafon, M. (2005). Rabies virus receptors. Journal of neurovirology, 11(1), 82-87.
Lentz, T.L. (1991). Structure-function relationships of curaremimetic neurotoxin loop 2 and of a structurally similar segment of rabies virus glycoprotein in their interaction with the nicotinic acetylcholine receptor. Biochemistry30(45): 10949-10957.
Mackessy, S.P. (2010). The field of reptile toxinology: snakes, lizards and their venoms. Handbook of venoms and toxins of reptiles; 3: 23.
Morjen, M.; Kallech-Ziri, O.; Bazaa, A.; Othman, H.; Mabrouk, K.; Zouari-Kessentini, R.; ... Luis, J. (2013). PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biology; 32(1): 52-62.
Pal, S.K.; Gomes, A.; Dasgupta, S.; Gomes, A. (2002). Snake venom as therapeutic agents: from toxin to drug development. Indian journal of experimental biology; 40(12): 1353-1358.
Rita, P.; Animesh, D.K.; Aninda, M.; Benoy, G.K.; Sandip, H.; Datta, K. (2011). Snake bite, snake venom, anti-venom and herbal antidote. A review. Int J Res Ayurveda pharm; 2(4): 1060-1067.
Russell, F.E. (1980). Snake venom poisoning. Philadelphia18: 139-234.
Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Malia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. (1985). Measurement of protein using bicinchoninic acid. Anal Biochem; 150: 76-85.
Tasoulis, T.; Isbister, G.K. (2017). A review and database of snake venom proteomes. Toxins9(9): 290.
Tipton, K.F.; Dajas, F. (1994). Neurotoxins in Neurobiology. CRC Press.
Tsetlin, V.; Hucho, F. (2004). Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS letters; 557(1-3): 9-13.
Wunner, W.H. (2003). Rabies virus. In Rabies (pp. 23-77). Academic Press.
Yang, D. ; Peng, M. ; Yang, H. ; Yang, Q. ; Xu, J. (2009). Expression, purification and characterization of Gloydius shedaoensis venom gloshedobin as Hsp70 fusion protein in Pichia pastoris. Protein expression and purification66(2): 138-14.