In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Ph.D., Department of Biology, Faculty of Science, Payame ‎Noor University, Po Box 19395-3697, Tehran, Iran‎

2 Assistant Professor, Department of Biology, Faculty of Science, ‎Payame Noor University, Po Box 19395-3697, Tehran, Iran

3 Professor, Department of Biochemistry, Pasteur Institute of ‎Iran, Pasteur Institute of Iran, Tehran, Iran

Abstract

Ovarian cancer happens as the result of change in gene and molecular metabolites. Because of chemotherapy side effects in cancer treatment such as drug resistance, using of complementary therapy with herbal and their derivatives is increased. This study evaluates anti-tumor effects of vitexin on AHRI, p53 and Kras genes expression by Real time PCR. Also metabolite changes due to these variations are measured by 1D NOESY, 1 HNMR. SKOV3 cells treated whit different concentrations of vitexin and determined IC50 by MTT assay. The IC50 was measured as 520µg /ml. Then RNA extracting and building of cDNA done to determine level of genes expression changes. Metabolites extracted by water, chloroformed and methanol and lyophilized samples evaluated by 1HNMR. The expression of AHRI and p53 tumor suppressor genes in the treated cells increased by 1.93 and 1.76 times, respectively, and the expression of Kras oncogene gene decreased by 0.23 times. Maximum changes in metabolites pathways observed in Aminoacyl-tRNA biosynthesis, Biotin, cysteine, methionine, branch amino acids, lysine metabolism, and steroids biosynthesis. Vitexin shows its anti-tumor effects by targeting of several biochemical pathways and reload of metabolites by change in genes which have roll in ovarian cancer. So to confirm this study more evaluations in pathway signaling is needed.   

Keywords

Babaei, F.; Moafizad, A.; Darvishvand, Z.; Mirzababaei, M.; Hosseinzadeh, H.; & Nassiri‐Asl, M. (2020). Review of the effects of vitexin in oxidative stress‐related diseases. Food Science & Nutrition.‏
Badgwell, D. B.; Lu, Z.; Le, K.; Gao, F.; Yang, M.; Suh, G. K & Bast, R. C. (2012). The tumor-suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the Stat3 and FAK/Rho signaling pathways. Oncogene31(1), 68-79.
Bonifácio, V. D.; Pereira, S. A.; Serpa, J.; & Vicente, J. B. (2020). Cysteine metabolic circuitries: druggable targets in cancer. British Journal of Cancer, 1-18.
Dobrzycka, B.; Terlikowski, S. J.; Kowalczuk, O.; Niklińska, W.; Chyczewski, L.; & Kulikowski, M. (2009). Mutations in the Kras gene in ovarian tumors. Folia histochemica et cytobiologica47(2), 221-224.
G Li, H.; Tian, Y.; Li, X.; Wang, B.; Zhai, D.; Bai, Y.; et al. (2019). Knockdown of IARS2 inhibited proliferation of acute myeloid leukemia cells by regulating p53/p21/PCNA/eIF4E pathway. Oncol. Res. 27, 673–680. doi: 10.3727/0965 04018x15426261956343.
Ganesan, K.; & Xu, B. (2017). Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Annals of the New York Academy of Sciences, 1401(1), 102-113.‏
Gil, J.; Ramírez-Torres, A.; & Encarnación-Guevara, S. (2017). Lysine acetylation and cancer: A proteomics perspective. Journal of proteomics150, 297-309.
Gottschalk, M.; Ivanova, G.; Collins, D. M.; Eustace, A.; O'Connor, R.; & Brougham, D. F. (2008). Metabolomic studies of human lung carcinoma cell lines using in vitro 1H NMR of whole cells and cellular extracts. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo21(8), 809-819.
He, M.; Min, J. W.; Kong, W. L.; He, X. H.; Li, J. X.; & Peng, B. W. (2016). A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 115, 74-85.
Lehnhardt, F. G.; Bock, C.; Röhn, G.; Ernestus, R. I.; & Hoehn, M. (2005). Metabolic differences between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, 18(6), 371-382.
Li, T.; & Deng, P. (2017). Nuclear Magnetic Resonance technique in tumor metabolism. Genes & diseases, 4(1), 28-36.‏
Lien, E. C.; Ghisolfi, L.; Geck, R. C.; Asara, J. M.; & Toker, A. (2017). Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Science signaling, 10(510).
Lodi, A.; & Ronen, S.M. (2011). Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PloS one6(10), e26155.
Mukhtar, E.; Adhami, V. M.; & Mukhtar, H. (2014). Targeting microtubules by natural agents for cancer therapy. Molecular cancer therapeutics, 13(2), 275-284.
Mungenast, F.; & Thalhammer, T. (2014). Estrogen biosynthesis and action in ovarian cancer. Frontiers in endocrinology, 5, 192.
Ninfali, P.; & Angelino, D. (2013). Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia, 89, 188-199.
Nunes, S. C.; Ramos, C.; Lopes-Coelho, F.; Sequeira, C. O.; Silva, F.; Gouveia-Fernandes, S & Serpa, J. (2018). Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Scientific reports, 8(1), 1-17.
Paramee, S.; Sookkhee, S.; Sakonwasun, C.; Takuathung, M.N.; Mungkornasawakul, P.; Nimlamool, W.; & Potikanond, S. (2018). Anti-cancer effects of Kaempferia parviflora on ovarian cancer SKOV3 cells. BMC complementary and alternative medicine18(1), 1-13.
Ping, Y.; Xu, C.; Xu, L.; Liao, G.; Zhou, Y.; Deng, C.; & Xiao, Y. (2020). Prioritizing gene cascading paths to model colorectal cancer through engineered organoids. Frontiers in bioengineering and biotechnology, 8.‏
Ren, Y. A.; Mullany, L. K.; Liu, Z.; Herron, A. J.; Wong, K. K.; & Richards, J. S. (2016). Mutant p53 promotes epithelial ovarian cancer by regulating tumor differentiation, metastasis, and responsiveness to steroid hormones. Cancer research, 76(8), 2206-2218.
Sanderson, J.T. (2006). The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicological sciences, 94(1), 3-21.
Sanderson, S. M.; Gao, X.; Dai, Z.; & Locasale, J. W. (2019). Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nature Reviews Cancer, 19(11), 625-637.
Silwal-Pandit, L.; Langerød, A.; & Børresen-Dale, A. L. (2017). TP53 mutations in breast and ovarian cancer. Cold Spring Harbor perspectives in medicine, 7(1), a026252.
Sutton, M. N.; Huang, G. Y.; Liang, X.; Sharma, R.; Reger, A. S.; Mao, W.; ... & Bast, R. C. (2019). DIRAS3-Derived peptide inhibits autophagy in ovarian cancer cells by binding to beclin1. Cancers11(4), 557.
Wang, W.; Cheng, H.; Gu, X.; & Yin, X. (2019). The natural flavonoid glycoside vitexin displays preclinical antitumor activity by suppressing NF-κB signaling in nasopharyngeal carcinoma. OncoTargets and therapy, 12, 4461.‏
Watanabe, T.; Miura, T.; Degawa, Y.; Fujita, Y.; Inoue, M.; Kawaguchi, M.; & Furihata, C. (2010). Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR. Cancer cell international, 10(1), 1-12.
Yamamoto, J.; Han, Q.; Inubushi, S.; Sugisawa, N.; Hamada, K.; Nishino, H & Hoffman, R. M. (2020). Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells. Biochemical and Biophysical Research Communications, 533(4), 1034-1038.
Yue, X.; Zhao, Y.; Xu, Y.; Zheng, M.; Feng, Z.; & Hu, W. (2017). Mutant p53 in cancer: accumulation, gain-of-function, and therapy. Journal of molecular biology,429(11), 1595-1606.
Zhou, Z.; Sun, B.; Nie, A.; Yu, D.; & Bian, M. (2020). Roles of Aminoacyl-tRNA Synthetases in Cancer. Frontiers in Cell and Developmental Biology8, 1446.