Babaei, F.; Moafizad, A.; Darvishvand, Z.; Mirzababaei, M.; Hosseinzadeh, H.; & Nassiri‐Asl, M. (2020). Review of the effects of vitexin in oxidative stress‐related diseases. Food Science & Nutrition.
Badgwell, D. B.; Lu, Z.; Le, K.; Gao, F.; Yang, M.; Suh, G. K & Bast, R. C. (2012). The tumor-suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the Stat3 and FAK/Rho signaling pathways. Oncogene, 31(1), 68-79.
Bonifácio, V. D.; Pereira, S. A.; Serpa, J.; & Vicente, J. B. (2020). Cysteine metabolic circuitries: druggable targets in cancer. British Journal of Cancer, 1-18.
Dobrzycka, B.; Terlikowski, S. J.; Kowalczuk, O.; Niklińska, W.; Chyczewski, L.; & Kulikowski, M. (2009). Mutations in the Kras gene in ovarian tumors. Folia histochemica et cytobiologica, 47(2), 221-224.
G Li, H.; Tian, Y.; Li, X.; Wang, B.; Zhai, D.; Bai, Y.; et al. (2019). Knockdown of IARS2 inhibited proliferation of acute myeloid leukemia cells by regulating p53/p21/PCNA/eIF4E pathway. Oncol. Res. 27, 673–680. doi: 10.3727/0965 04018x15426261956343.
Ganesan, K.; & Xu, B. (2017). Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Annals of the New York Academy of Sciences, 1401(1), 102-113.
Gil, J.; Ramírez-Torres, A.; & Encarnación-Guevara, S. (2017). Lysine acetylation and cancer: A proteomics perspective. Journal of proteomics, 150, 297-309.
Gottschalk, M.; Ivanova, G.; Collins, D. M.; Eustace, A.; O'Connor, R.; & Brougham, D. F. (2008). Metabolomic studies of human lung carcinoma cell lines using in vitro 1H NMR of whole cells and cellular extracts. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, 21(8), 809-819.
He, M.; Min, J. W.; Kong, W. L.; He, X. H.; Li, J. X.; & Peng, B. W. (2016). A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 115, 74-85.
Lehnhardt, F. G.; Bock, C.; Röhn, G.; Ernestus, R. I.; & Hoehn, M. (2005). Metabolic differences between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, 18(6), 371-382.
Li, T.; & Deng, P. (2017). Nuclear Magnetic Resonance technique in tumor metabolism. Genes & diseases, 4(1), 28-36.
Lien, E. C.; Ghisolfi, L.; Geck, R. C.; Asara, J. M.; & Toker, A. (2017). Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Science signaling, 10(510).
Lodi, A.; & Ronen, S.M. (2011). Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PloS one, 6(10), e26155.
Mukhtar, E.; Adhami, V. M.; & Mukhtar, H. (2014). Targeting microtubules by natural agents for cancer therapy. Molecular cancer therapeutics, 13(2), 275-284.
Mungenast, F.; & Thalhammer, T. (2014). Estrogen biosynthesis and action in ovarian cancer. Frontiers in endocrinology, 5, 192.
Ninfali, P.; & Angelino, D. (2013). Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia, 89, 188-199.
Nunes, S. C.; Ramos, C.; Lopes-Coelho, F.; Sequeira, C. O.; Silva, F.; Gouveia-Fernandes, S & Serpa, J. (2018). Cysteine allows ovarian cancer cells to adapt to hypoxia and to escape from carboplatin cytotoxicity. Scientific reports, 8(1), 1-17.
Paramee, S.; Sookkhee, S.; Sakonwasun, C.; Takuathung, M.N.; Mungkornasawakul, P.; Nimlamool, W.; & Potikanond, S. (2018). Anti-cancer effects of Kaempferia parviflora on ovarian cancer SKOV3 cells. BMC complementary and alternative medicine, 18(1), 1-13.
Ping, Y.; Xu, C.; Xu, L.; Liao, G.; Zhou, Y.; Deng, C.; & Xiao, Y. (2020). Prioritizing gene cascading paths to model colorectal cancer through engineered organoids. Frontiers in bioengineering and biotechnology, 8.
Ren, Y. A.; Mullany, L. K.; Liu, Z.; Herron, A. J.; Wong, K. K.; & Richards, J. S. (2016). Mutant p53 promotes epithelial ovarian cancer by regulating tumor differentiation, metastasis, and responsiveness to steroid hormones. Cancer research, 76(8), 2206-2218.
Sanderson, J.T. (2006). The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicological sciences, 94(1), 3-21.
Sanderson, S. M.; Gao, X.; Dai, Z.; & Locasale, J. W. (2019). Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nature Reviews Cancer, 19(11), 625-637.
Silwal-Pandit, L.; Langerød, A.; & Børresen-Dale, A. L. (2017). TP53 mutations in breast and ovarian cancer. Cold Spring Harbor perspectives in medicine, 7(1), a026252.
Sutton, M. N.; Huang, G. Y.; Liang, X.; Sharma, R.; Reger, A. S.; Mao, W.; ... & Bast, R. C. (2019). DIRAS3-Derived peptide inhibits autophagy in ovarian cancer cells by binding to beclin1. Cancers, 11(4), 557.
Wang, W.; Cheng, H.; Gu, X.; & Yin, X. (2019). The natural flavonoid glycoside vitexin displays preclinical antitumor activity by suppressing NF-κB signaling in nasopharyngeal carcinoma. OncoTargets and therapy, 12, 4461.
Watanabe, T.; Miura, T.; Degawa, Y.; Fujita, Y.; Inoue, M.; Kawaguchi, M.; & Furihata, C. (2010). Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR. Cancer cell international, 10(1), 1-12.
Yamamoto, J.; Han, Q.; Inubushi, S.; Sugisawa, N.; Hamada, K.; Nishino, H & Hoffman, R. M. (2020). Histone methylation status of H3K4me3 and H3K9me3 under methionine restriction is unstable in methionine-addicted cancer cells, but stable in normal cells. Biochemical and Biophysical Research Communications, 533(4), 1034-1038.
Yue, X.; Zhao, Y.; Xu, Y.; Zheng, M.; Feng, Z.; & Hu, W. (2017). Mutant p53 in cancer: accumulation, gain-of-function, and therapy. Journal of molecular biology,429(11), 1595-1606.
Zhou, Z.; Sun, B.; Nie, A.; Yu, D.; & Bian, M. (2020). Roles of Aminoacyl-tRNA Synthetases in Cancer. Frontiers in Cell and Developmental Biology, 8, 1446.