In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Author

Assistant Professor of Biology, Department of ‎Science, Payame Noor Niversity, Iran.‎

Abstract

In this study, the effect of iron oxide nanoparticles on the structure, thermal stability and activity of bovine pancreatic trypsin was investigated. Various spectroscopic techniques including UV absorption, circular distortion, thermal stability, fluorescence and kinetics at pH 8 were used to achieve this goal. Thermodynamic and kinetic results showed that trypsin stability decreased in the presence of iron oxide nanoparticles and increased its activity. Fluorescence spectroscopy showed that the nanoparticles can reduce trypsin fluorescence through static quenching. Based on the thermodynamic parameters, the process of binding the nanoparticles to trypsin is performed as a spontaneous reaction which the electrostatic forces play the main role in. Circular dichroism studies showed changes in the secondary structure of trypsin as an increase in α-Helix l content and a decrease in β-sheets. UV spectroscopy showed that iron oxide nanoparticles bind to trypsin and cause changes in protein structure. The interaction studies of Fe3O4 nanoparticles and trypsin show that not only water and solvent molecules can affect on 3D structure of trypsin and protein but also play an important role in adsorption nanoparticles.

Keywords

Aghili, Z.; Taheri, S.; Zeinabad, H. A.; Pishkar, L., Saboury, A.A.; Rahimi, A.; & Falahati, M. (2016). Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies. PloSone; 11: (10).
Bahamin, N.; & Shareghi, B. (2014). The Effect of Cadmium Sulfate on the Thermal Stability and Kinetics of Peroxidase at Different Temperatures. eab.journals.pnu.ac.ir; 2 (6): 7-16.
Bayramoglu, G., Ozalp, V.C., & Arica, M.Y. (2014). Magnetic polymeric beads functionalized with different mixed-mode ligands for reversible immobilization of trypsin. Industrial & Engineering Chemistry Research; 53(1): 132-140.
Bellova, A., Bystrenova, E.; Koneracka, M.; Kopcansky, P.; Valle, F.; Tomasovicova, N.; Timko, M.; Bagelova, J.; Biscarini, F.; & Gazovaet, Z. (2010). Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology; 21(6): 065103.
Brena, B.; González-Pombo, P.; & Batista-Viera, F. (2013). Immobilization of enzymes: a literature survey. Immobilization of enzymes and cells, Springer: 15-31.
Chanphai, P.; Thomas, T.; & Tajmir-Riahi, H. (2016). Conjugation of biogenic and synthetic polyamines with trypsin and trypsin inhibitor. RSC Advances; 6 (59): 53690-53697.
Chi, Z.; Liu, R.; & Zhang, H. (2010). Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules; 11(9): 2454-2459.
Farhadian, S.; Shareghi, B.; Momeni, L.; Abou-Zied, O.K.; Sirotkin, V.A.; Tachiya, M.; & Saboury, A.A. (2018). Insights into the molecular interaction between sucrose and α-chymotrypsin. International Journal of Biological Macromolecules; 114: 950-960.
Fei, L.; & Perrett, S. (2009). Effect of nanoparticles on protein folding and fibrillogenesis. International Journal of Molecular Sciences; 10(2): 646-655.
Ghosh, S. (2008). Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: a conformational view. Colloids and Surfaces B: Biointerfaces; 66 (2): 178-186.
Hemmateenejad, B.; & Yousefinejad, S. (2013). Interaction study of human serum albumin and ZnS nanoparticles using fluorescence spectrometry. Journal of Molecular Structure; 1037: 317-322.
Hu, Y.-J.; Liu, Y.; Zhang, L.-X.; Zhao, R.-M. & Qu, S.-S. (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. Journal of Molecular Structure; 750(1-3): 174-178.
Kaushik, J.K.; & Bhat, R. (1998). Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. The Journal of Physical Chemistry B; 102(36): 7058-7066.
Kim, J.; Grate, J.W.; & Wang, P. (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science; 61(3): 1017-1026.
Kotormán, M.; Laczkó, I.; Szabó, A.; & Simon, L. (2003). Effects of Ca2+ on catalytic activity and conformation of trypsin and α-chymotrypsin in aqueous ethanol. Biochemical and Biophysical Research Communications;304(1):18-21.
Koutsopoulos, S.; Patzsch, K.; Bosker, W.T.; & Norde, W. (2007). Adsorption of trypsin on hydrophilic and hydrophobic surfaces. Langmuir; 23 (4): 2000-2006.
Kumar, A.; Attri, P.; & Venkatesu, P. (2012). Effect of polyols on the native structure of α-chymotrypsin: A comparable study. Thermochimica Acta; 536: 55-62.
Lakowicz, J.R. (2013). Principles of fluorescence spectroscopy, Springer Science & Business Media.
Li, H.; Pu, J.; Wang, Y.; Liu, C.; Yu, J.; Li, T. & Wang, R. (2013). Comparative study of the binding of Trypsin with bifendate and analogs by spectrofluorimetry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 115: 1-11.
Liu, F.-F.; Ji, L.; Zhang, L.;Dong, X.Y.; & Su, Y. (2010). Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations. The Journal of Chemical Physics; 132(22): 06B605.
Liu, Y.; & Liu, R. (2012). The interaction of α-chymotrypsin with one persistent organic pollutant (dicofol): Spectroscope and molecular modeling identification. Food and Chemical Toxicology; 50(9): 3298-3305.
Lu, D.; Zhao, X.; Zhao, Y.; Zhang, B.; Zhang, B.; Geng, M.; & Liu, R. (2011). Binding of Sudan II and Sudan IV to bovine serum albumin: comparison studies. Food and Chemical Toxicology; 49 (12): 3158-3164.
Mahdavian, A.R.; & Mirrahimi, M.A.-S. (2010). Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chemical Engineering Journal; 159(1-3): 264-271.
Mahmodian, S.; Momeni, L. & Shareghi, B. (2018). Investigating the MgO nanoparticles and trypsin interaction through spectroscopic methods. Monatshefte für Chemie-Chemical Monthly; 149(11): 2131-2136.
Mahmoudi, M.; Shokrgozar, M.A., Sardari, S.; Moghadam, M.K.; Vali, H.; Laurent, S.; & Stroeve, P. (2011). Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale; 3(3): 1127-1138.
Millan, S.; Satish, L.; Kesh, S.; Chaudhary, Y.S.; & Sahoo, H. (2016). Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking. Journal of Photochemistry and Photobiology B: Biology; 162: 248-257.
Momeni, L.; Shareghi, B.; Farhadian, S.; Vaziri, S.; Saboury, A.A.; & Raisi, F. (2018). A molecular simulation and spectroscopic approach to the binding affinity between trypsin and 2-propanol and protein conformation. International Journal of Biological Macromolecules; 119: 477-485.
Momeni, L.; Shareghi, B.; Saboury, A.; & Evini, M. (2017). Interaction of TiO2 nanoparticle with trypsin analyzed by kinetic and spectroscopic methods. Monatshefte für Chemie-Chemical Monthly; 148 (2): 199-207.
Momeni, L.; Shareghi, B.; & Saboury, A.A. (2017). Spectroscopic analysis of the interaction between NiO nanoparticles and bovine trypsin. Journal of Biomolecular Structure and Dynamics; 35(6): 1381-1388.
Momeni, L.; Shareghi, B.; Saboury, A.A.; & Farhadian, S. (2016). Comparative studies on the interaction of spermidine with bovine trypsin by multispectroscopic and docking methods. the Journal of Physical Chemistry B; 120(36): 9632-9641.
Momeni, L.; Shareghi, B.; Saboury, A.A.; Farhadian, S.; & Reisi, F. (2017). A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin. International Journal of Biological Macromolecules; 94: 145-153.
Murphy, K.P. (2001). Protein structure, stability, and folding, Springer Science & Business Media.
Oobatake, M.; & Ooi, T. (1993). Hydration and heat stability effects on protein unfolding. Progress in Biophysics and Molecular Biology; 59(3): 237-284.
Panyam, J.; & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews; 55(3): 329-347.
Powers, K.W.; Brown, S.C.; Krishna, V.B.; Wasdo, S.C.; Moudgil, B.M.; & Roberts, S.M. (2006). Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences; 90(2): 296-303.
Prasad, S.; & Roy, I. (2010). Effect of disaccharides on the stabilization of bovine trypsin against detergent and autolysis. Biotechnology Progress; 26(3): 627-635.
Rajabi, M.; Shareghi, B.; Farhadian, S.; & Momeni, L. (2019). Evaluation of maltose on conformation and activity parameters of trypsin. Journal of Biomolecular Structure and Dynamics; 1-6.
Rawlings, N.D.; & Salvesen, G. (2013). Handbook of proteolytic enzymes, Academic press Amsterdam.
Ross, P.D.; & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry; 20(11): 3096-3102.
Saeidifar, M.; Mansouri-Torshizi, H.; & Saboury, A.A. (2015). Biophysical study on the interaction between two palladium (II) complexes and human serum albumin by Multispectroscopic methods. Journal of Luminescence; 167: 391-398.
Schmid, F.X. (2001) Biological macromolecules: UV‐visible spectrophotometry. e LS.
Shami, E.; Rothstein, A.; & Ramjeesingh, M. (1989). Stabilization of biologically active proteins. Trends in Biotechnology; 7 (7): 186-190.
Shareghi, B.; Farhadian, S.; Zamani, N.; Salavati-Niasari, M.; &  Gholamrezaei, S. (2016). Stability and enzyme activity of lysozyme in the presence of Fe3O4 nanoparticles. Monatshefte für Chemie-Chemical Monthly; 147(2): 465-471.
Shaw, A.; & Bott, R. (1996). Engineering enzymes for stability. Current Opinion in Structural Biology; 6(4): 546-550.
Wang, G.; Chen, Y.; Yan, C.; & Lu, Y. (2015). Study on the interaction between gold nanoparticles and papain by spectroscopic methods. Journal of Luminescence; 157: 229-234.
Wang, W.-R.; Zhu, R.-R.; Xiao, R.; Liu, H.; & Wang, S.-L. (2011). The electrostatic interactions between nano-TiO2 and trypsin inhibit the enzyme activity and change the secondary structure of trypsin. Biological Trace Element Research; 142 (3): 435-446.
Wang, Y.-Q.; & Zhang, H.-M. (2014). Effects of bisphenol S on the structures and activities of trypsin and pepsin. Journal of Agricultural and Food Chemistry; 62(46): 11303-11311.
Wu, X.; & Narsimhan, G. (2008). Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics; 1784 (11): 1694-1701.
Xu, Z.; Wang, S.-L.; & Gao, H.-W. (2010). Effects of nano-sized silicon dioxide on the structures and activities of three functional proteins. Journal of Hazardous Materials; 180(1-3): 375-383.
Zhang, H.-M.;  Wang, Y.-Q.; & Jiang, M.-L. (2009). A fluorimetric study of the interaction of CI Solvent Red 24 with haemoglobin. Dyes and Pigments; 82(2): 156-163.
Zhang, R., Song, M.; Li, X.; Guan, Zh.; & Wang, X. (2006). In situ electrochemical contact angle study of hemoglobin and hemoglobin–Fe3O4 nanocomposites. Analytical and Bioanalytical Chemistry; 386(7-8): 2075-2079.