Aghili, Z.; Taheri, S.; Zeinabad, H. A.; Pishkar, L., Saboury, A.A.; Rahimi, A.; & Falahati, M. (2016). Investigating the interaction of Fe nanoparticles with lysozyme by biophysical and molecular docking studies. PloSone; 11: (10).
Bahamin, N.; & Shareghi, B. (2014). The Effect of Cadmium Sulfate on the Thermal Stability and Kinetics of Peroxidase at Different Temperatures. eab.journals.pnu.ac.ir; 2 (6): 7-16.
Bayramoglu, G., Ozalp, V.C., & Arica, M.Y. (2014). Magnetic polymeric beads functionalized with different mixed-mode ligands for reversible immobilization of trypsin. Industrial & Engineering Chemistry Research; 53(1): 132-140.
Bellova, A., Bystrenova, E.; Koneracka, M.; Kopcansky, P.; Valle, F.; Tomasovicova, N.; Timko, M.; Bagelova, J.; Biscarini, F.; & Gazovaet, Z. (2010). Effect of Fe3O4 magnetic nanoparticles on lysozyme amyloid aggregation. Nanotechnology; 21(6): 065103.
Brena, B.; González-Pombo, P.; & Batista-Viera, F. (2013). Immobilization of enzymes: a literature survey. Immobilization of enzymes and cells, Springer: 15-31.
Chanphai, P.; Thomas, T.; & Tajmir-Riahi, H. (2016). Conjugation of biogenic and synthetic polyamines with trypsin and trypsin inhibitor. RSC Advances; 6 (59): 53690-53697.
Chi, Z.; Liu, R.; & Zhang, H. (2010). Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules; 11(9): 2454-2459.
Farhadian, S.; Shareghi, B.; Momeni, L.; Abou-Zied, O.K.; Sirotkin, V.A.; Tachiya, M.; & Saboury, A.A. (2018). Insights into the molecular interaction between sucrose and α-chymotrypsin. International Journal of Biological Macromolecules; 114: 950-960.
Fei, L.; & Perrett, S. (2009). Effect of nanoparticles on protein folding and fibrillogenesis. International Journal of Molecular Sciences; 10(2): 646-655.
Ghosh, S. (2008). Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: a conformational view. Colloids and Surfaces B: Biointerfaces; 66 (2): 178-186.
Hemmateenejad, B.; & Yousefinejad, S. (2013). Interaction study of human serum albumin and ZnS nanoparticles using fluorescence spectrometry. Journal of Molecular Structure; 1037: 317-322.
Hu, Y.-J.; Liu, Y.; Zhang, L.-X.; Zhao, R.-M. & Qu, S.-S. (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. Journal of Molecular Structure; 750(1-3): 174-178.
Kaushik, J.K.; & Bhat, R. (1998). Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. The Journal of Physical Chemistry B; 102(36): 7058-7066.
Kim, J.; Grate, J.W.; & Wang, P. (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science; 61(3): 1017-1026.
Kotormán, M.; Laczkó, I.; Szabó, A.; & Simon, L. (2003). Effects of Ca2+ on catalytic activity and conformation of trypsin and α-chymotrypsin in aqueous ethanol. Biochemical and Biophysical Research Communications;304(1):18-21.
Koutsopoulos, S.; Patzsch, K.; Bosker, W.T.; & Norde, W. (2007). Adsorption of trypsin on hydrophilic and hydrophobic surfaces. Langmuir; 23 (4): 2000-2006.
Kumar, A.; Attri, P.; & Venkatesu, P. (2012). Effect of polyols on the native structure of α-chymotrypsin: A comparable study. Thermochimica Acta; 536: 55-62.
Lakowicz, J.R. (2013). Principles of fluorescence spectroscopy, Springer Science & Business Media.
Li, H.; Pu, J.; Wang, Y.; Liu, C.; Yu, J.; Li, T. & Wang, R. (2013). Comparative study of the binding of Trypsin with bifendate and analogs by spectrofluorimetry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; 115: 1-11.
Liu, F.-F.; Ji, L.; Zhang, L.;Dong, X.Y.; & Su, Y. (2010). Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations. The Journal of Chemical Physics; 132(22): 06B605.
Liu, Y.; & Liu, R. (2012). The interaction of α-chymotrypsin with one persistent organic pollutant (dicofol): Spectroscope and molecular modeling identification. Food and Chemical Toxicology; 50(9): 3298-3305.
Lu, D.; Zhao, X.; Zhao, Y.; Zhang, B.; Zhang, B.; Geng, M.; & Liu, R. (2011). Binding of Sudan II and Sudan IV to bovine serum albumin: comparison studies. Food and Chemical Toxicology; 49 (12): 3158-3164.
Mahdavian, A.R.; & Mirrahimi, M.A.-S. (2010). Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chemical Engineering Journal; 159(1-3): 264-271.
Mahmodian, S.; Momeni, L. & Shareghi, B. (2018). Investigating the MgO nanoparticles and trypsin interaction through spectroscopic methods. Monatshefte für Chemie-Chemical Monthly; 149(11): 2131-2136.
Mahmoudi, M.; Shokrgozar, M.A., Sardari, S.; Moghadam, M.K.; Vali, H.; Laurent, S.; & Stroeve, P. (2011). Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale; 3(3): 1127-1138.
Millan, S.; Satish, L.; Kesh, S.; Chaudhary, Y.S.; & Sahoo, H. (2016). Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking. Journal of Photochemistry and Photobiology B: Biology; 162: 248-257.
Momeni, L.; Shareghi, B.; Farhadian, S.; Vaziri, S.; Saboury, A.A.; & Raisi, F. (2018). A molecular simulation and spectroscopic approach to the binding affinity between trypsin and 2-propanol and protein conformation. International Journal of Biological Macromolecules; 119: 477-485.
Momeni, L.; Shareghi, B.; Saboury, A.; & Evini, M. (2017). Interaction of TiO2 nanoparticle with trypsin analyzed by kinetic and spectroscopic methods. Monatshefte für Chemie-Chemical Monthly; 148 (2): 199-207.
Momeni, L.; Shareghi, B.; & Saboury, A.A. (2017). Spectroscopic analysis of the interaction between NiO nanoparticles and bovine trypsin. Journal of Biomolecular Structure and Dynamics; 35(6): 1381-1388.
Momeni, L.; Shareghi, B.; Saboury, A.A.; & Farhadian, S. (2016). Comparative studies on the interaction of spermidine with bovine trypsin by multispectroscopic and docking methods. the Journal of Physical Chemistry B; 120(36): 9632-9641.
Momeni, L.; Shareghi, B.; Saboury, A.A.; Farhadian, S.; & Reisi, F. (2017). A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin. International Journal of Biological Macromolecules; 94: 145-153.
Murphy, K.P. (2001). Protein structure, stability, and folding, Springer Science & Business Media.
Oobatake, M.; & Ooi, T. (1993). Hydration and heat stability effects on protein unfolding. Progress in Biophysics and Molecular Biology; 59(3): 237-284.
Panyam, J.; & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews; 55(3): 329-347.
Powers, K.W.; Brown, S.C.; Krishna, V.B.; Wasdo, S.C.; Moudgil, B.M.; & Roberts, S.M. (2006). Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences; 90(2): 296-303.
Prasad, S.; & Roy, I. (2010). Effect of disaccharides on the stabilization of bovine trypsin against detergent and autolysis. Biotechnology Progress; 26(3): 627-635.
Rajabi, M.; Shareghi, B.; Farhadian, S.; & Momeni, L. (2019). Evaluation of maltose on conformation and activity parameters of trypsin. Journal of Biomolecular Structure and Dynamics; 1-6.
Rawlings, N.D.; & Salvesen, G. (2013). Handbook of proteolytic enzymes, Academic press Amsterdam.
Ross, P.D.; & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry; 20(11): 3096-3102.
Saeidifar, M.; Mansouri-Torshizi, H.; & Saboury, A.A. (2015). Biophysical study on the interaction between two palladium (II) complexes and human serum albumin by Multispectroscopic methods. Journal of Luminescence; 167: 391-398.
Schmid, F.X. (2001) Biological macromolecules: UV‐visible spectrophotometry. e LS.
Shami, E.; Rothstein, A.; & Ramjeesingh, M. (1989). Stabilization of biologically active proteins. Trends in Biotechnology; 7 (7): 186-190.
Shareghi, B.; Farhadian, S.; Zamani, N.; Salavati-Niasari, M.; & Gholamrezaei, S. (2016). Stability and enzyme activity of lysozyme in the presence of Fe3O4 nanoparticles. Monatshefte für Chemie-Chemical Monthly; 147(2): 465-471.
Shaw, A.; & Bott, R. (1996). Engineering enzymes for stability. Current Opinion in Structural Biology; 6(4): 546-550.
Wang, G.; Chen, Y.; Yan, C.; & Lu, Y. (2015). Study on the interaction between gold nanoparticles and papain by spectroscopic methods. Journal of Luminescence; 157: 229-234.
Wang, W.-R.; Zhu, R.-R.; Xiao, R.; Liu, H.; & Wang, S.-L. (2011). The electrostatic interactions between nano-TiO2 and trypsin inhibit the enzyme activity and change the secondary structure of trypsin. Biological Trace Element Research; 142 (3): 435-446.
Wang, Y.-Q.; & Zhang, H.-M. (2014). Effects of bisphenol S on the structures and activities of trypsin and pepsin. Journal of Agricultural and Food Chemistry; 62(46): 11303-11311.
Wu, X.; & Narsimhan, G. (2008). Effect of surface concentration on secondary and tertiary conformational changes of lysozyme adsorbed on silica nanoparticles. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics; 1784 (11): 1694-1701.
Xu, Z.; Wang, S.-L.; & Gao, H.-W. (2010). Effects of nano-sized silicon dioxide on the structures and activities of three functional proteins. Journal of Hazardous Materials; 180(1-3): 375-383.
Zhang, H.-M.;
Wang, Y.-Q.;
& Jiang, M.-L. (2009). A fluorimetric study of the interaction of CI Solvent Red 24 with haemoglobin. Dyes and Pigments; 82(2): 156-163.
Zhang, R., Song, M.; Li, X.; Guan, Zh.; & Wang, X. (2006). In situ electrochemical contact angle study of hemoglobin and hemoglobin–Fe3O4 nanocomposites. Analytical and Bioanalytical Chemistry; 386(7-8): 2075-2079.