In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 M.A. in Animal Physiology, Payam Noor University ‎of Tehran, Iran

2 Assistant Professor, Department of Biology, Payame ‎Noor University, Iran ‎

3 Professor, Department of Biology, Falavarjan Branch, ‎Islamic Azad University, Isfahan, Iran

Abstract

Abstract
Since copper nanoparticles are one of the first nanoparticles planned in the industry, recent research has shown the pathological toxicity of these nanoparticles in different tissues and organs. Therefore, the purpose of this study was to investigate the effect of copper oxide nanoparticles on gonadal tissues in male rats. In this study, 40 Wistar rats were divided in four groups control group and 10, 20, 30 (mg/ kg) of copper oxide nanoparticles, respectively 5 Times, received for one day in a row for 10 days. In order to histopathologic studies, the testicular tissue samples were stained with hematoxylin-eosin. The data were analyzed in the spss software, one –way anova and duncan's test. The results showed that the amount of spermatogonial cells, primary spermatocyte, spermatid cells were decreased in dose-dependent manner. In the testicle, disorders such as abnormality and severe deformity with different morphology in the spermicidal tubes and destruction of sertoli cells were observed. The results of the studies showed that copper oxide nanoparticles with oxidative stress and cellular degradation disrupted the structure and process of gonadal spermatogenesis which due to the absence of mortality in mice may eventually overcome disturbances in normal conditions.

Keywords

 
Braydich-Stolle, L.K.; Lucas, B.; Schrand, A.; Murdock, R.C.; Lee, T.; Schlager, J.J., et al. (2010). Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicological sciences; 116(2):577-89.
Bremner, I. (1998). Manifestations of copper excess. Am J Clin Nutr; 67: 1069-1073.
Carlson, C.; Hussain, S. M.; Schrand, A. M.; et al. (2008). Unique cellular interaction of silver nanoparticles: sized dependent generation of reactive oxygen spacies.J phys chem B; 112 (43): 13608-19.
Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; et al. (2006). Acute toxicological effects of copper
nanoparticles in vivo. Toxicol Lett; 163: 109-120.
Forgacs, Z.; Massanyi, P.; Lukan, N.; Somosy, Z. (2012). Reproductive toxicology of nickel-review. J Environ Sci Health A Tox Hazard Subst Environ Eng; 47: 1249-1260.
Gaetke, L. M.; Chow, C. K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology; 189: 147-163. [PubMed: 12821289].
Genan, A.; al Bairuty, G. A.; Mohammad, N.; Taha, M. N. (2016). Effects of copper nanoparticles on reproductive organs of male albino rats. International Journal for Sciences and Technology; 17-24.
Hess, R. A.; Renato, d. e.; Franca, L. (2008). Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol; 636: 1-15.
Hoover, M. D.; Stefaniak, A.B.; Day, G.A.; Geraci, C. L. (2007). Exposure assessment considerations for nanoparticles in the workplace. National  institute for occupational safty and health: 71-81.
Jesse, B.; Mary, R, L. (2004). Maintaining copper homeostasis regulation of copper trafficking proteins in response to copper deficiency or overload. J Nutr Biochem, 15, 316-22.
kalirawana, t.; sharma, p.; joshi, s. c. (2018). Reproductive Toxicity of Copper Nanoparticles in Male Albino Rats. Int J Pharma Res Health Sci; 6 (1). 2258-63.
Lan, Z.; Yang, W. X. (2012). Nanoparticles and spermatogenesis: how do nanoparticles affectspermatogenesis and penetrate the blood-testis barrier. Nanomedicine; 7(4): 579-96.
Luo, C.; Li, Y.; Yang, L.; Zheng, Y.; Long, J.; Jia, J.; et al. (2014). activation of erk and p53 regulates copper oxide nanoparticle-induced cytotoxicity in keratinocytes and fibroblasts. int j nanomed; 9: 4763-4772.
Mamonova, M. D.; Matasovb, I. V.; Babushkinaa, O. E.; Losevc, Y. G.; Chebotarevad, E.V.; Gladkovaa.; et al. (2013). Study of Physical Properties and Biological Activity of Copper Nanoparticles Nanotekhnologi; 8(5–6): 303-308.
Mohseni, K.; Mirzamohamadi, M.; Sohrabi, D. (2015). The Effect of the Molybdenum trioxide (MoO3) nanoparticles on histological changes of testis and spermatogenesis process in adult male Wistar rats. AMUJ; 17(93): 64-74.
Ng, T. B.; Liu, W. K. (1990). Toxic effect of heavy metals on cells isolated from the rat adrenal and testis. In Vitro Cell Dev Biol; 26: 24-28.
Ringstrom, S. J.; Schwartz, N. B. (1985). Cortisol suppresses the LH, but not the FSH response to gonadotropin–releasing hormone after orchidectomy. Endocrinology; 116(1): 472-474.
Roychoudhury, S.; Slivkova, J.; Bulla, J.; Massanyi, P. (2008). Copper administration alerts fine parameters of spermatozoa motility in vitro. Folia Veterinaria; 52: 64-68
Roychoudhury, S.; Massanyi, p.; Bulla, j.; Choudhury, M. d.; Straka, L.; Lukac, N., et al. (2010). In vitro copper toxicity on rabbit spermatozoa motility, morphology and cell membrane integrity. J Environ Sci Health A Tox Hazard Subst Environ Eng; 45: 1482-1491.
Roychoudhury, S.; Nath, S.; Massanyi, P.; Stawarz, R.; Kacaniova, M.; Kolesarova,
A (2016). Copper-Induced Changes in Reproductive Functions: In Vivo and In
Vitro Effects. Physiol. Res, 65, 11-22.
Seyedalipour, B.; Barimani, N., Badoei-Dalfard, A. (2016) Evaluating of serum biochemical biomarker and liver histopathological changes in NMRI mice following exposure to copper oxide nanoparticle. Razi Journal of Medical Sciences; 23(146): 75-82.
Seyedalipour, B.; Barimani, N.; Hoseini, S. M. (2015). Embryonic malformations following exposure to copper oxide nanoparticles in Mus musculus. J Shahrekord Univ Med Sci; 17(5): 23-32.
Sizova, E.; Miroshnikov, S.; Polyakova, V.; Gluschenko, N.; Skalny, A (2012). Copper Nanoparticles asModulators of Apoptosis and Structural Changes in Tissues. J Biomater Nanobiotechnol; 3: 97-104.