In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Author

Abstract

The bilateral relationship between Ventro Medial Nucleus and dopaminergic system may play an important role in the secretion of the gastrointestinal exocrine glands, nutritional behaviors and habits.
The aim of this study was to investigate the role of dopaminergic receptors in regulation of the exocrine glands and to find out whether the change in saliva secretion is the primary effects of central nervous system or there are subsequences of taking food, lick, swallowing and digestion in the mouth. Ninety rats were stereotaxically implanted under urethane anesthesia. The rats were divided into 9 groups: one control group, one fasted control group, two sham groups given surgery and surgery plus medicine solvents, one SCH23390 group, one bromocriptine group, one mixed group: SCH23390 along with bromocriptine, one pilocarpine and a mixed group: bromocriptine along with pilocarpine. In this study, saliva secretion was gathered from submandibular glands by cannulas and measures then volume of secretion by using SPSS program the groups were compared (Test Anova). The saliva secretion was not significantly different between all groups except SCH23390 group, pilocarpine, and both mixed groups which showed significant differences in the saliva secretion. This study showed that SCH23390 (7.5 μg) could increase saliva secretion. Bromocriptine could not affect saliva secretion. Bromocriptine along with pilocarpine significantly decreased saliva secretion. However, this agonist together with SCH23390 significantly increased saliva secretion. So the dopaminergic system of the Ventro Medial Nucleus has a considerable effect on the secretion of the exocrine glands in the digestive system.

Keywords

Main Subjects

Abbasnejad, M.; Karimian, S. M.; Zarrindast, M. R.; Faghihi, M.; Bahram, P. (2001). The effects of bromocriptine injection in ventromedial nucleus of hypothalamus on food and water intake as well as gain in adult male rats. Cell J (Yakhteh); 3(2): pp. 97-102.
Ahima, R.S.; Osei, S.Y. (2001). Molecular regulation of eating behavior: new insights and prospects for therapeutic strategis. Trends Mol Med; 7(5): pp. 205-208.
Akubuiro, A.; Bridget Zimmerman, M.; Boles Ponto, LL.; Walsh, SA.; Sunderland, J.; McCormick, L.; Singh, M. (2013). Hyperactive hypothalamus, motivated and non-distractible chronic overeating in ADAR2 transgenic mice. Genes Brain Behav; 12(3): pp.  311-322.
Amerongen, A.V.; Veerman, E.C. (2002). Saliva: the defender of the oral cavity. Oral Dis; 8: pp. 12-22.
Baptista, T.; Contreras, Q.; Teneud, L.; Albornoz, M.A.; Aciosta, A. (1998). Mechanism of the neuroleptic-induced obesity in female rats. Prog Neuropsychopharmacol Biol Psychiatry; 22(1): pp. 187-198.
Baptista, T.; de. Baptista, E.A.; Lalonde, J.; Plamondon, J.; Kin, N.M.; Beaulieu, S. (2004). Comparative effects of the antipsychotics sulpiride and risperidone in female rats on energy balance, body composition, fat morphology and macronutrient selection. Prog Neuropsychopharmacology Biol Psychiatry; 28(8): pp. 1305-1311.
Baptista, T.; Molina, MG.; Martinez, J.L.; de Quijada, M.; Calanche de Cuesta, I.; Acosta, A. (1997). Effects of the antipsychotic drug sulpiride on reproductive hormones in healthy premenopausal women: relationship with body weight regulation. Pharmacopsychiatry; 30(6): 256-262.
Bern, R.M.; Levy, M.N.; (2012). Medical Physiology. (4th edition): USA-Mosby year book; pp. 586- 908.
Beverly, J.L.; Beverly, MF.; Meguid, M. M. (1995). Alteration in extracellular GABA in the ventral hypothalamus of rats in response to glucoprivation. Am J Physiol; 269: pp. 1174-1178.
Borella, T.L.; De Luca, LA Jr.; Colombari, DSA.; Menani, J.V. (2008). Central muscarinic receptor subtypes involved in pilocarpine-induced salivation, hypertension and water intake. British Journal of Pharmacology; 155: pp. 1256-1263.
Brown, J.H.; Taylor, P.; Hardman, J.G.; Limbird, L. E. (1996). The Pharmacological Basis of Therapeutics. McGraw–Hill; 9th edition: pp. 141-160.
Carla dos Santos E,  Fosquiera EC, Batista Rodrigues Johann AC, Rinaldi M,Vida Cassi Bettega P, Trindade Gregio AM (2017). Pyshotropic Drugs: Side Effects on Mouth. Journal of Pharmacological and Clinical Research; 3(4): pp. 001-002. JPCR.MS.ID.555620.
Carruba, M.O.; Riccardi, S.; Spano, P.; Mantegazza, P. (1985). Dopaminergic and serotoninergic anorectics differentially antagonize insuline- and 2-DG- induced hyperphagia. Life Sci; 36(18): pp. 1739-1749.
Caine, S.B.; Heinrichs, S.C.; Coffin, V.L.; Koob, G. F. (1995). Effects of the dopamine D1 antagonist SCH23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Res; 692(1-2): pp. 47-56.
Cone, R. D. (1999). The central melanocortin system and energy homeostasis. Trends Endocrinol Metab; 10(6): pp. 211-216.
Cocchi, D.; Ingrassia, S.; Rusconi, L.; Villa, I. (1987). Absence of D1 receptors that stimulate prolactin release in the rat pituitary. Eur J of Pharmacol;142: pp. 425-429.
Edgar, M.; Dawes, C.; O’Mullane, D.; (2004). Saliva and oral health. 3rd ed. London: BDJ Books
Ferraris, M.E.G.; Munõz, A.C. (2006). Histologia e embriologia bucodental. 2. ed. Rio de Janeiro:Guanabara Koogan.
Fábián, T.K.; Hermann, P.; Beck, A.; Frejérdy, P.; Fábián, G. (2012). Salivary defense proteins: their network and role in innate and acquired oral immunity. Int J Mol Sci; 13: pp. 4295-4320.
Feldman, R.S.; Meyer, J.S.; Qenzer, L.F.; (1997). Principles of Neuropsychopharmachology. United State of America. Sinauer; 239-307.
Fernandez-Solari, J.P.; Prestifilippo, P.; Vissio, M.; Ehrhart-Bornstein, S.R.; Bornstein, V.; Rettori, J.C.; Elverdin (2009). Anandamide injected into the lateral ventricle of the brain inhibits submandibular salivary secretion by attenuating parasympathetic neurotransmission. Brazilian Journal of Medical and Biological Research; 42: pp. 537-544.
Fetissov, S.O.; Meguid, M.M.; Sato, T.; Zhang, L.H. (2002). Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rats and food intake. Am J Physiol Regul Integr Comp Physiol; 283(4): pp. 905-910.
Gallacher, D.V.; Petersen O.H. (1983). Stimulus- secretion coupling in mamalian salivary glands in gastrointestinal physiology. Baltimor; 28(chpt.1): pp. 1-51.
Gillard, E.R.; Dang, D.Q.; Stanley, B.G. (1993) Evidence that neuropeptid Y and dopamine in the periforncial hypothalamus interact antagonistically in the control of food intake. Brain Ress; 628(1-2): pp. 128-136.
Humphrey SP, Williamson RT. (2001). A review of saliva: normal composition, flow, and function. J Prosthet Dent; 85: pp. 162-169.
Kleitz-Nelson, H.K.; Cornil, C.A.; Balthazart, J.; Ball, G.F. (2010). Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail. Eur J Neurosci; 32(1): pp. 118-129.
Lung, M. A. (2003). Autonomic nervous control of myoepithelial cells and secretion in submandibular gland of anaesthetized dogs. J Physiol; 546: pp. 837-850.
Murthykumar, K.; (2014). Saliva Composition and Function: A review. International Journal of Pharmaceutical Science and Health Care; 3(4).
Parada, M.A.; Hernandez, L; Hoebel, B.G. (1988). Sulpiride injection in the lateral hypothalamus induced feeding and drinking rats. Pharmacol Biochem Behave; 30(4): pp. 917-923.
Parada, M.A.; Hernandez, L.; Puig de parade, M.; Paez, X.; Hobel, B.G. (1990). Dopamin in the lateral hypothalamus may be involved in the inhibition of locomotion related to food and water seeking. Brain Res Bull; 25(6): pp. 961-968.
Paxinos, G.; Keith, B. (2004). Franklin J. The Mouse Brain in Stereotaxic Coordinates: Gulf Professional Publishing.
Rasheed, M.; Al Ghasham, A. (2012). Central dopaminergic system and its implications in stress-mediated neurological disorders and gastric ulcers: Short Review. Adv in Pharma Sci; 1-10.
Shahbazi, F. (2017). The effect of sulpiride and bromocriptine injection into ventromedial nucleus of hypothalamus on the saliva secretion in the rat. Experimental Animal Biology Journal; 21(1): pp. 25-33.
Takakura, A.C.; Moreira, T.S.; Laitano, S.C.; de Luca, Junior L.A.; Renzi, A.; Menani, J.V. (2003). Central muscarinic receptors signal pilocarpine-induced salivation. J Dent Res; 82: pp. 993-997.
Tandler, B.; Phillips, C.J. (1998). Microstructure of mammalian salivary glands and its relationship to diet. Oral frontiers on biology; 10: pp. 21-35.
Toushih, T.; Shahbazi, F.; Ghajarzadeh, M.; Vahedi Mazdabadi, N. (2015). The effect of SCH23390 and bromocriptine injection into hypothalamus on the volume and acidity of gastric acid secretion in the rat. Experimental Animal Biology Journal; 14(2): pp. 7-15.
Turner, M.D.; Ship, J.A. (2007). Dry mouth and its effects on the oral health of elderly people. J Am Dent Assoc; 138: pp. 15-20.
Wang, G.J.; Volkow, N.D.; Fowler, J.S. (2002). The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin
Ther Targets; 6(5): pp. 601-609.
Waraczynski, M.; Kuehn, L.; Schmid, E.; Stoehr, M.; Zwifelhofer, W. (2014). Comparison of the effects on brain stimulation reward of D1 blockade or D2 stimulation combined with AMPA blockade in the extended amygdala and nucleus accumbens. Behav Brain Res; 278: pp. 337-341.
Xiaojiao, G.; Zongyuan, M.; Kang, L. (2015). Two dopamine receptors play different roles in phase change of the migratory locust. Frontiers in Behavioral Neuroscience; 80(9): pp. 1-13.
Yoshica, K.; Yoshida, T.; Wakabayashi, Y.; Nishioka, H.; Kondo, M. (1989). Effects of exercise training on brown adipose tissue thermogenesis in ovariectomized obes rats. Endocrinal Jpn; 36(3): pp. 403-408.