In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Instructor, Department of Biology, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

2 Assiocate Professor, Department of Agriculture, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

3 Assiocate Professor, Department of Biology, Faculty of Basic Scienses, Shahed University, P.O. Box 331911865, Tehran, Iran.

4 Professor, Department of Agriculture, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

5 Assistant Professor, Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran.

Abstract

Abstract
Chlorella sorokiniana contains valuable metabolites such as proteins, antioxidants, lipids, vitamins and minerals, and is used as a food for animals and medicine. Therefore, in the present study, the effect of some culture factors and conditions on nutrient supplementation of algal levels for aquaculture was investigated. For this purpose, algae were cultured in modified Bold Basal Media (BBM) and 0.5 gram of glucose was added as carbon source. Then, the effect of pH, addition of thiamine pyrophosphate, changes in nitrate and phosphate levels, addition of yeast and lack of glucose, were studied on growth and content of algal metabolites. The highest growth rate, antioxidant content, protein and some algal mineral content were obtained in medium containing twice the nitrate and phosphate with or without thiamine pyrophosphate. Adding yeast increased dry weight and decreased none significantly antioxidants. Adding thiamine pyrophosphate alone and low reduction of acidity did not significantly effect on growth and metabolites of alga. Lack of glucose significantly reduced alga growth.

Keywords

 
Refernces
 
Andersen, R.A.; (2005). Algal culturing techniques. Elsevier Inc, 589.
Agrawal, S.S.; Paridhavi, M.; (2007). Herbal Drug Technology. Hydrabad, Universities Press; 519-530.
ASTM-D 4698-92, (Standard Practice for Total Digestion of Sediment Samples for Chemical Analysis of Various Metals), (2013). AGA; 5.
Becker, E.W.; (2007). Micro-algae as a source of protein. Biotechnology Advances; 25(2): 207-10.
Chu­ W., Zhengquan W., ­Hailong, S.; Shenglei G.; (2006). ­Effects of different concentrations of nitrogen and phosphorus on chlorophyll biosynthesis, chlorophylla fluoresence, and photos- ynthesis inLarix olgensis seedlings. Frontiers of Forestry in China; 1(2): 170-175
Fiedor,  J.; Burda K.; (2014).Potential role of carotenoids as antioxidants in human health and disease. Nutrients; 6(2): 466-488.
Fried, S.; Mackie, B.; Nothwehr, E.; (2003). Nitrate and phosphate levels positively affect the growth of algae species found in Perry Pond. Tillers; 4, 21-24.
Hoffmann, JP.; (1998).  Wastewater treatm ent with suspended and nonsuspended algae. Journal of Phycology; 34(5): 757-763.
Hsu, Ch.Y.; Chao, P.Y.; Hu, Sh.P.; Yang, Ch.M.; (2013). The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food and Nutrition Sciences; 4(8): 1-8.
Hunt, R.W.; Chinnasamy, S.; Bhatnagar, A.; Das, K.C.; (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechno-  logy; 162 (8): 2400-2414
Khatun, B.; Rahman, R.; Rahman, M. S.; (2014). Evaluation of YeastSaccharom yces cerevisiae and Algae, Chlorella vulgaris as Diet for Rotifer Brachionus calyciflorus. The Agriculturists; 12(1): 1-9.
Kobayashi, N.; Noel, E.; Barnes, A.; Watson, A.; Rosenberg, J.; Erickson, G.; Oyler, G.; (2013). Characterization on three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresource Technology; 150: 377-386.
Kong, W.B.; Yang, H.; Cao, Y.T.; Song, H.; Hua, S.F.; Xia, C.G.; (2013) Effect of Glycerol and Glucose on the Enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture, Food Technology and  Biotechnology; 51(1): 62-69.
Krzemiñska, I.; Pawlik-Skowroñska, B.; Trzciñska, M.; Tys, J.; (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering; 37(4), 735-741.
Lin, P.Y.; Tsai, Ch.T.; Chuang, W.L.; Chao, Y.H.; Pan, I.H.; Chen, Y.K.; Lin, Ch.Ch.; Wang, B.Y.; (2017). Chlorella sorokiniana induces mitochondrial mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth invivo. BMC Complementary and Alternative Medicine; 17: 88-108.
Mccaffrey, W.; Burrell, R.; Burrell, M.; Kotelko, B.; (2011). Use of plant growth regulators to enhance algae growth. EP2387304A1.
Mizuno, Y.; Sato, A.; Watanabe, K.; Hirata, A.; Takeshita, T.; Ota, S.; Sato, N.; Zachleder, V.; Tsuzuki, M.; Kawano, S.; (2013).   Sequential accumulation of starch andlipid induced by sulfur deficiency in chlorella and parachlorella species.Bioresource Technology; 129: 150-155.
Morales-Sánchez; D., Tinoco-Valencia, R.; Kyndt, J.; Martinez, A.; (2013). Heterotrophic growth of Neochloris oleoabundansusing glucose as a carbon source, Biotechnology for Biofuels; 6: 100-112.
Nigam, S.; Prakash Rai, M.; Sharma, R.; (2011). Effect of Nitrogen on Growth and Lipid Content of Chlorella pyrenoidosa, American Journal of Biochemistry and Biotechnology; 7(3): 124-129.
Pagnanelli, F.; Altimari, P.; Franco, T.; Toro, L.; (2011). Mixotrophic growth of Chlorella vulgaris and Nannochloropsi s oculata: Interaction between glucose and nitrate. Journal of Chemical Technology & Biotechnology; 89(5): 652-661.
Presta, A.; Stillman, M.J.; (1997). Incorporation of copper into the yeast Saccharomyces cerevisiae. Identification of Cu (I)-metallothionein in intact yeast cells. Journal of inorganic biochemistry; 66(4): 231-240.
Rachlin, J.W.L.; Grosso, A.; (1991). The effects of pH on the growth of Chlorella vulgaris and its interactions with cadmium toxicity. Archives of Enviromental  Contamination Toxicol- ogy; 20 (4): 505-8.
Ramanna, L.; Guldhe, A.; Rawat, I.; Bux F.; (2014). The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources, Bioresource Technology; 168: 127-135.
Renaud, S.M.; Parry, D.L.; Luong-Van, T.; Kuo, C.; Padovan, A.; Sammy, N.; (1991). Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Phycology; 3(1): 43-53.
Ribeiro, A.; Tesima, K.; Souza, J.; Yokoya, N.; (2013).  Effects of nitrogen and phosphorus availabilities on growth, pigment, and protein contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). Journal of Applied Phycology; 25(4): 1151-1157.
Rosenberg, J.N.; Kobayashi, N.; Barnes, A.; Noel, E.A.; Betenbaugh, M.J.; Oyler, G.A.; (2014). Comparative Analyses of three Chlorella species in response to light and sugar. Plos One; 9(4): 1-13.
Ruiz, J.; Alvarez, P.; Arbib, Z.; Garrido, C.; Barrag´an, J.; Perales, J.A.; (2011). Effect nitrogen and phosphorus concentration on their removal kinetic treated urban wastewater by chlorella vulgaris, International Journal of Phytoremediation; 13(9): 884-96.
Sayegh, F.A.Q.; Montagenes, D.J.S.; (2011). Temperature shifts induse intraspecific variation in microalgae production and biochemical composition. Bioresource Technology; 102(3): 3007-3013.
Sharma, R.; Singh, G.P.; Sharma, V.K.; (2012). Effects of Culture Conditions on Growth and Biochemical Profile of Chlorella Vulgaris. Journal of Plant Pathology and Microbiology; 3(5) 1000131-5.
Shu, Ch.H.; (2012). Light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of Chemical Technology& Biotechnology; 87(5): 601-607.
Shugarman, P.M.; Appleman, D.; (1996). .Chlorophyll Synthesis in Chlorella II. Effect of Glucose and Light Intensity on the Lag Phase, Plant Physiology; 41(10): 1701-1708.
Singh, S.K.; Bansal, A.; Jha, M.K.; Jain, R.; (2013)., Production of biodiesel from wastewater grown Chlorella minutissima. Indian Journal of Chemical Technology; 20: 341-345.  
Stirk, W.A.; Bálint, P.; Tarkowská, D.; Novák, O.; Maróti, G.; Ljung, K.; Turečková, V.; Strand, M.; Ordög, V.;  Staden, J.; (2014). Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiology and Biochemistry; 79: 66-76.
Watanabe, T.; Ozaki, N.; Iwashita, K.; Fujii, T.; Iefuji, H.; (2008). Breeding of wastewater treatment yeasts that accumulate high concentrations of phosphorus, Applied  Microbiology and Biotechnology; 80(2): 331-338.
Wang, C.; Li, H.; Wang, Q.; Wei, P.; (2010). Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry. Sheng Wu Gong Cheng Xu. Bao;  26 (8): 1074-9
Wellburn, A.R.; (1994).  The spectral determination chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology; 144: 307-313.
Zachariadis, G.A.; Raidou, E.S.; Themelis, D.G.; Stratis, J.A.; (2002). Determination of mineral content of active dry yeast used in pharmaceutical formulations; Journal of Pharmaceutical and Biomedical Analysis; 28(3-4): 463-473.
Zhu, L.; (2015). Biorefinery as a promisin g approach to promote microalgae industry: An innovative framework. Renewable and Sustainable Energy Reviews; 41: 1376-1384.