In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Assistant Professor, Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Instrcutor, Department of Biology, Payame Noor University, Tehran, Iran

3 Professor, Department of Biology, Payame Noor University, Tehran, Iran

Abstract


Amyloid fibrils are a class of protein nanoparticles in which native proteins are converted into dense fibers. The aggregation can be pathogenic or non-pathogenic. Recently, these fibrils have been considered for the production of Bio–nanomaterials due to their unique structure. In this study, Bovine serum albumin was used as a model protein to optimize the fibrillation process. Concentrations of 2-10 mg/ml were prepared in buffer at different pH values of 3-7 and placed at 0-70 ºC for 0 to 48 hours, and the amounts of produced amyloid fibrils were analyzed by spectrophotometry, fluorimetry and circular dichroism. The spectra obtained from the Congo red absorption method were compared on the basis of the maximum wavelength and absorption at maximum wavelengths with a sample containing Congo red. The concentration of 10 mg/ml of protein, which was 48 hours in buffer at pH = 4 at 50 ºC, produced the highest amounts of amyloid. Optimum conditions were obtained by ThT fluorescence and circular dichroism at a concentration of 10 mg/ml, pH = 4, 70 ºC and 48 hours. The presence of the fibers was confirmed by transmission electron microscope images. The insoluble structure and dimensions of amyloid fibrils can be describe them as new Bio–nanomaterials. Optimizing the production of these structures allows them to be produced at higher scales.
 

Keywords

Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.; (2002). Molecular biology of the cell. New York: Garland Science.
Arasteh, A.; Habibi-Rezaei, M.; Ebrahim-Habibi, A.; Moosavi-Movahedi, A.A.; (2012). Response surface methodology for optimizing the bovine serum albumin fibrillation. The Protein Journal; 31(6): 457-65.
Carrió, M.; González-Montalbán, N.; Vera, A.; Villaverde, A.; Ventura, S.; (2005). Amyloid-like properties of bacterial inclusion bodies. J Mol Biol; 347: 1025-37.
Chi, E.Y.; Krishnan, S.; Randolph, T.W.; Carpenter, J.F.; (2003). Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharmaceutical research; 20(9): 1325-36.
Chiti, F.; Dobson, C.M.; (2006). Protein Misfolding, Functional Amyloid, and Human Disease. Annu Rev Biochem; 75: 333-66.
Chiti, F.; Dobson, C.M.; (2006). Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem; 75: 333-66.
Dirix, C.; Duvetter, T.; Loey, A.V.; Hendrickx, M.; Heremans, K.; (2005). The in situ observation of the temperature and pressure stability of recombinant Aspergillus aculeatus pectin methylesterase with Fourier transform IR spectroscopy reveals an unusual pressure stability of beta-helices. The Biochemical Journal; 392(Pt 3): 565-71.
Dobson, C.; (2003). Protein folding and misfolding. Nature; 426(6968): 884-90.
Dobson, C.; (2006). Protein aggregation and its consequences for human disease. Protein Pept Lett; 13(3): 219-27.
Dobson, C.M.; (2006). Protein aggregation and its consequences for human disease. Protein Pept Lett; 13(3): 219-27.
Eichner, T.; Radford, S.E.; (2011). A diversity of assembly mechanisms of a generic amyloid fold. Molecular Cell; 43(1): 8-18.
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A.; (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of controlled release: official journal of the Controlled Release Society; 157(2): 168-82.
Fink, A.L.; (1998). Protein aggregation: folding aggregates, inclusion bodies and amyloid. Folding and Design; 3(1): R9-R23.
Finke, J.M.; Roy, M.; Zimm, B.H.; Jennings, P.A.; (2000). Aggregation events occur prior to stable intermediate formation during refolding of interleukin 1. Biochemistry; 39(3): 575-83.
Fukuma, T.; Mostaert, A.; Jarvis, S.; (2006). Explanation for the mechanical strength of amyloid fibrils. Tribology Letters; 22(3): 233-7.
Ganesh, C.; Zaid, F.N.; Udgaonkar, J.B.; Varadarajan, R.; (2001). Reversible formation of on-pathway macroscopic aggregates during the folding of maltose binding protein. Protein Science; 10: 1635-44.
Garvey, M.; Gras, S.; Meehan, S.; Meade, S.; Carver, J.; Gerrard, J.; (2009). Protein nanofibres of defined morphology prepared from mixtures of crude crystallins. Int J Nanotechnol; 6: 258-2783.
Gelamo, E.; Tabak, M.; (2000). Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim Acta A Mol Biomol Spectrosc; 56(11): 2255-71.
Georgiou, G.; Valax, P.; Ostermeier, M.; Horowitz, P.M.; (1994). Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein science: a publication of the Protein Society; 3(11): 1953.
Giger, K.; Vanam, R.P., Seyrek, E.; Dubin, P.L.; (2008). Suppression of insulin aggregation by heparin. Biomacromolecules; 9(9): 2338-44.
Gras, S.L.; (2007). Amyloid Fibrils: From Disease to Design. New Biomaterial Applications for Self-Assembling Cross-β Fibrils. Applied chemistry; 5.
Gsponer, J.; Vendruscolo, M.; (2006). Theoretical approaches to protein aggregation. Protein and Peptide Letters; 13(3): 287-93.
Hamada, D.; Yanagihara, I.; Tsumoto, K.; (2004). Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotechnol; 22(2): 93-7.
Holm, N.; Jespersen, S.; Thomassen, L.; Wolff, T.; Sehgal, P.; Thomsen, L.; et al.; (2007). Aggregation and fibrillation of bovine serum albumin. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics; 1774(9): 1128-38.
Honda, C.; Kamizono, H.; Samejima, T.; Endo, K.; (2000). Studies on Thermal Aggregation of Bovine Serum Albumin as a Drug Carrier. Chem Pharm Bull; 48(4): 464-6.
Jayawardena, N.; Kaur, M.; Nair, S.; Malmstrom, J.; Goldstone, D.; Negron, L.; et al.; (2017). Amyloid Fibrils from Hemoglobin. Biomolecules; 7(2): 37.
Jeyashekar, N.S.; Sadana, A.; Vo-Dinh, T.; (2005). Protein amyloidose misfolding: mechanisms, detection, and pathological implications. Methods Mol Biol; 300: 417-35.
Juarez, J.; Taboada, P.; Mosquera, V.; (2009). Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Biophysical Journal; 96(6): 2353-70.
Knowles, T.P.; Fitzpatrick, A.W.; Meehan, S.; Mott, H.R.; Vendruscolo, M.; Dobson, C.M.; et al.; (2007). Role of intermolecular forces in defining material properties of protein nanofibrils. Science; 318(5858): 1900-3.
Kouchakzadeh, H.; Safavi, M.S.; Shojaosadati, S.A.; (2015). Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Advances in protein chemistry and structural biology; 98: 121-43.
Kratz, F.; (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of controlled release: official journal of the Controlled Release Society; 132(3): 171-83.
Lashuel, H.A.; Lansbury, P.T.; (2006). Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Quarterly Reviews of Biophysics; 39(02): 167-201.
Lashuel, H.A.; Lansbury, P.T.; (2006). Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Quarterly Reviews of Biophysics; 39(02): 167.
Lorenzo, A.; Yankner, B.A.; (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl AcadSci USA; 91(25): 12243-7.
Lorenzo, A.; Yankner, B.A.; (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proceedings of the National Academy of Sciences; 91(25): 12243-7.
MacPhee, C.E.; Woolfson, D.N.; (2004). Engineered and designed peptide-based fibrous biomaterials. Current Opinion in Solid State and Materials Science; 8(2): 141-9.
Militello, V.; Casarino, C.; Emanuele, A.; Giostra, A.; Pullara, F.; Leone, M.; (2004). Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering. Biophysical Chemistry; 107(2): 175-87.
Pilkington, S.M.; Roberts, S.J.; Meade, S.J.; Gerrard, J.A.; (2010). Amyloid fibrils as a nanoscaffold for enzyme immobilization. Biotechnology Progress; 26(1): 93-100.
Scheibel, T.; Parthasarathy, R.; Sawicki, G.; Lin, X.M.; Jaeger, H.; Lindquist, S.L.; (2003). Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A; 100(8): 4527-32.
Sethi, A.; Sher, M.; Akram, M.; Karim, S.; Khiljee, S.; Sajjad, A.; et al.; (2013). AlbuminLasa drug delivery and diagnostic tool and its market approved products. ActaPoloniaePharmaceutica ñ Drug Research; 70(4): 597-600.
Smith, J.; Knowles, T.; Dobson, C.; Macphee, C.; Welland, M.; (2006). Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA; 103(43): 15806-11.
Speed, M.A.; King, J.; Wang, D.I.C.; (1997). Polymerization mechanism of polypeptide chain aggregation. Biotechnology and Bioengineering; 54(4): 333-43.
Taboada, P.; Barbosa, S.; Castro, E.; Mosquera, V.; (2006). Amyloid fibril formation and other aggregate species formed by human serum albumin association. The Journal of Physical Chemistry B.; 110(42): 20733-6.
Teschke, C.M.; (1999). Aggregation and assembly of phage P22 temperature-sensitive coat protein mutants in vitro mimic the in vivo phenotype. Biochemistry; 38(10): 2873-81.
Uversky, V.N.; Segel, D.J.; Doniach, S.; Fink, A.L.; (1998). Association-induced folding of globular proteins. Proc Natl Acad Sci USA; 95: 5480-3.
Vermeer, A.W.P.; Norde, W.; (2000). The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophysical Journal; 78(1): 394-404.
Waterhouse, S.; Gerrard, J.; (2004). Amyluid Fibrilis in bionanotechnology. Current Chmistrey; 57: 519-23.