In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article


1 M.Sc. Graduate Student, Dept. of Fisheries Sciences, Faculty of Natural Resources, Urmia University

2 . Assistant Professor, Dept. of Fisheries Sciences, Faculty of Natural Resources, Urmia University

3 Assistant Professor, Urmia Lake Research Institute, Urmia University

4 Associate Professor, Urmia Lake Research Institute, Urmia University


Main purpose of the present research was to study the effects of replacing green algae with agricultural by-products on growth and survival rate of Artemia franciscana. The study was a 4×2 factorial experiment conducted as a completely randomized design. Factors were different types of diet (wheat bran, rice bran, mixture of wheat and rice bran and the alge (Dunaliella salina) and probiotic inclusion level (0 and 10% of the daily meal). All treatments were in triplicates and the experiment lasted for 17 days post hatch. At the end of the trial, growth and the survival rates were calculated. Results showed that total length of Artemia fed wheat bran and alge with probiotic (8.20±0.03 mm) was the highest and that of group fed wheat and rice bran and algae (6.76±0.03 mm) was the lowest (p0.05).  According to the results, it seems that unicellular algae can be replaced with easily affordable agricultural by-products and artemia could convert waste to wealth for the sake of environment and expanding aquaculture enterprise.


Agh, N.; Van Stappen, G.; Bossier, P.; Sepehri, H.; Lotfi, V.; Razavi Rouhani, S.M.; Sorgeloos, P.; (2008). Effects of salinity on survival, growth, reproductive and life span characteristics of Artemia population from Urmia Lake and neighboring lagoons. Pakistan Journal of Biological Sciences; 11(2): 164-172.
Avella, M. A.; Olivotto, I.; Silvi, S.; Place, A. R.; & Carnevali, O.; (2010). Effect of dietary probiotics on clownfish: a molecular approach to define how lactic acid bacteria modulate development in a marine fish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology; 298(2): R359-R371.
Coutteau, P.; Brendonck, L.; Lavens, P.; & Sorgeloos, P.; (1992). The use of manipulated baker's yeast as an algal substitute for the laboratory culture of Anostraca. Hydrobiologia; 234(1):25-32.
D'Agostino, A.; (1980). The vital requirements of Artemia: physiology and nutrition. The Brine Shrimp. Vol. 2. Physiology, Biochemistry, Molecular Biology, 474.
 Das, S.; Lyla, P.; & Khan, S. A.; (2006). Marine microbial diversity and ecology: importance and future perspectives. Current Science; 90(10): 1325-1335.
Dash, G.; Raman, R. P.; Prasad, K. P.; Makesh, M.; Pradeep, M. A.; & Sen, S.; (2015). Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish & Shellfish Immunology; 43(1): 167-174.
Dhont, J.; Lavens, P.; (1996). Tank production and use of ongrown Artemia. Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper; 361: 164-195.
Dhont, J.; Sorgeloos, P.; (2002). Applications of Artemia Artemia: Basic and applied biology (pp. 251-277): Springer.
Dobbeleir, J.; Adam, N.; Bossuyt, E.; Bruggeman, E.; & Sorgeloos, P.; (1980). New aspects of the use of inert diets for high density culturing of brine shrimp.
Fernández, R. G.; (2001). Artemia bioencapsulation I. Effect of particle sizes on the filtering behavior of Artemia franciscana. Journal of Crustacean Biology; 21(2): 435-442.
Intriago, P.; Jones, D.; (1993). Bacteria as food for Artemia. Aquaculture; 113(1): 115-127.
Jamali, H.; Imani, A.; Abdollahi, D.; Roozbehfar, R.; Isari, A.; (2015). Use of Probiotic Bacillus spp. in Rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) Enrichment: Effects on Growth and Survival of Pacific White Shrimp, Litopenaeus vannamei, Larvae. Probiotics and Antimicrobial Proteins; 7(2): 118-125.
Jobling, M.; (2015). Fish nutrition research: past, present and future. Aquaculture International, 1-20.
Lamari, F.; Sadok, K.; Bakhrouf, A.; Gatesoupe, F. J.; (2014). Selection of lactic acid bacteria as candidate probiotics and in vivo test on Artemia nauplii. Aquaculture International; 22(2): 699-709.
Léger, P.; Bengtson, D.; Simpson, K.; Sorgeloos, P.; (1986). The use and nutritional value of Artemia as a food source. Oceanography and Marine Biology; 24: 521-623.
Li, C. Y.; Lu, J. J.; Wu, C. P.; & Lien, T. F.; (2014). Effects of probiotics and bremelain fermented soybean meal replacing fish meal on growth performance, nutrient retention and carcass traits of broilers. Livestock Science; 163: 94-101.
Naegel, L. C.; (1999). Controlled production of Artemia biomass using an inert commercial diet, compared with the microalgae C haetoceros. Aquacultural Engineering; 21(1): 49-59.
Orozco-Medina, C.; Maeda-Martı́nez, A. M.; López-Cortés, A.; (2002). Effect of aerobic Gram-positive heterotrophic bacteria associated with Artemia franciscana cysts on the survival and development of its larvae. Aquaculture; 213(1): 15-29.
Oshnukhah, M.; Tukmechi, A.; Farokhi, F.; Manaffar, R.; (2014). Comparative effect of different forms of Lactobacillus casei on growth and immunity in rainbow trout (Oncorhynchus mykiss). Iranian Veterinary Journal; 9(4): 25-35.
Ownagh, A.; Agh, N.; Noori, F.; (2010). Optimization of single-celled algae replacement of agricultural products in the feed brine shrimp Artemia urmiana and parthenogenetic. Journal of Fisheries, 20(3): 11-22.
Ownagh, E.; Agh, N.; Noori, F.; (2015). Comparison of the growth, survival and nutritional value of Artemia using various agricultural by-products and unicellular algae Dunaliella salina. Iranian Journal of Fisheries Sciences; 14(2): 358-368.
Sakata, T.; Kawazu, T.; (1990). Isolation of Streptococci from fish and aquatic environments. Mem Fac Fish Kagoshima Univ; 39: 151-157.
Sorgeloos, P.; (1986). Manual for the culture and use of brine shrimp Artemia in aquaculture, 1986.
Sorgeloos, P.; Kulasekarapandian, S.; (1984). Production and use of Artemia in aquaculture. CMFRI Special Publication; 15: 1-73.
Teresita, D.N.J.M.; Leticia, G.R.; (2004). Biomass production and nutritional value of Artemia sp. (Anostraca: Artemiidae) in Campeche, Mexico. Revista de Biologia Tropical; 53: 447- 454.
Verschuere, L., Fievez, V., Vooren, L., Verstraete, W. (1997). The contribution of individual populations to the Biolog pattern of model microbial communities FEMS Microbiology Ecology; 24(4): 353- 362.
Verschuere, L.; Rombaut, G.; Huys, G.; Dhont, J.; Sorgeloos, P.; Verstraete, W.; (1999). Microbial Control of the Culture of Artemia Juveniles through Preemptive Colonization by Selected Bacterial Strains. Applied and Environmental Microbiology; 65(6): 2527-2533.
Wang, Y.; Hu, M.; Cao, L.; Yang, Y., Wang, W., (2008). Effects of daphnia (Moina micrura) plus chlorella (Chlorella pyrenoidosa) or microparticle diets on growth and survival of larval loach (Misgurnus anguillicaudatus). Aquaculture International; 16(4): 361-368.
Wang, Y.; Zha, L.; & Xu, Z.; (2006). Effects of probiotics on Penaeus vannamei pond sediments. Ying yong sheng tai xue bao The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban; 17(9): 1765-1767.
Ziaei-Nejad, S.; Habibi Rezaei, M.; Azari Takami, GH.; Lovett, D.L.; Mirvaghefi, A.R.; Shakouri, M.; (2006). The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture; 252: 516-524.
Zmora, O.; Shpigel, M.; (2006). Intensive mass production of Artemia in a recirculated system. Aquaculture; 255(1): 488-494.