In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Ph.D. Candidate in Biochemistry, Payame Noor University, Tehran Iran. And Researcher in Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

2 Ph.D. candidate in Developmental Biology, Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

3 Professor Asistant, Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

4 Professor in Biochemistry, Payame Noor university, Tehran, Iran

Abstract

Spinal cord injury (SCI) is a devastating condition producing great personal and societal costs and for which there is no effective treatment. Stem cell transplantation is a promising therapeutic strategy, though much preclinical and clinical research work remains. Here, we briefly describe SCI epidemiology, pathophysiology, and transplantation trial in human developments, including termination of the first human embryonic stem cell experimental and clinical stem cell strategies. Research in stem cell biology and cell reprogramming is rapidly advancing, with the hope of moving stem cell therapy closer to helping people with SCI. We examine issue important for clinical translation and provide a commentary on recent SCI.
 

Keywords

Ackery, A.; Tator, C.; Krassioukov, A.; (2004). A global perspective on spinal cord injury epidemiology. J Neurotrauma; 21(10): 1355-1370.##Anwar, M.A.; Al Shehabi, T.S.; Eid; A.H.; (2016). "Inflammogenesis of Secondary Spinal Cord Injury". Front Cell Neurosci; 10: 98-105.##Arthur, A.; Shi, S.; Zannettino, A.C.; Fujii, N.; Gronthos, S.; Koblar, S.A.; (2009). Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells; 27(9): 2229-2237.##Ben-David, U.; Benvenisty, N.; (2011). The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer; 11(4): 268-277.##Biernaskie, J.; Sparling, J.S.; Liu, J.; Shannon, C.P.; Plemel, J.R.; Xie, Y.; Miller, F.D.; Tetzlaff, W.; (2007). "Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury". J Neurosci; 27(36): 9545-9559.##Borlongan, C.V.; Glover, L.E.; Tajiri, N.; Kaneko, Y.; Freeman, T.B.; (2011).  The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol; 95(2): 213-228.##Brustle, O.; Jones, K.N.; Learish, R.D.; Karram, K.; Choudhary, K.; Wiestler, O.D.; Duncan, I.D.; McKay, R.D.; (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science; 285 (5428): 754-756.##Callera, F.; do Nascimento, R.X.; (2006). Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol; 34(2): 130-131.##Carpenter, M.K.; Inokuma, M.S.; Denham, J.; Mujtaba, T.; Chiu, C.P. Rao, M.S.; (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol; 172(2): 383-397.##CH, T.; (1995). Epidemiology and general characteristics of the spinal cord injury patient. In: Benzel EC, ed. Contemporary Management of Spinal Cord Injury. Park Ridge, Illinois, USA: American Association of Neurological Surgeons; 9-13.##Chen, J.; Tang, Y.X.; Liu, Y.M.; Hu, X.Q.; Liu, N.; Wang, S.X.; Zhang, Y.; Zeng, W.G.; Ni, H.J.; Zhao, B.; Chen, Y.F.; Tang, Z.P.; (2012) Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther; 18(10): 847-854.##Connick, P.; Kolappan, M.; Crawley, C.; Webber, D.J.; Patani, R.; Michell, A.W.; Du, M.Q.; Luan, S.L.; Altmann, D.R.; Thompson, A.J.; Compston, A.; Scott, M.A.; Miller, D.H.; Chandran, S.; (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol; 11(2): 150-156.##Efe, J.A.; Hilcove, S.; Kim, J.; Zhou, H.; Ouyang, K.; Wang, G.; Chen, J.; Ding, S.; (2010). "Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy". Nat Cell Biol; 13(3): 215-222.##Enzmann, G.U.; Benton, R.L.; Talbott, J.F.; Cao, Q.; Whittemore, S.R.; (2006). Functional considerations of stem cell transplantation therapy for spinal cord repair. J Neurotrauma; 23(3-4): 479-495.##Evans, M.J.; Kaufman, M.H.; (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature; 292(5819): 154-156.##Fawcett, J.W.; Asher, R.A.; (1999). The glial scar and central nervous system repair. Brain Res Bull; 49(6): 377-391.##Fehlings, M.G.; Vawda, R.; (2011) Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics; 8(4): 704-720.##Fink, K.L.; Cafferty, W.B.; (2016). Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury. Neurotherapeutics; 13(2): 370-381.##Fujimoto, Y.; Abematsu, M.; Falk, A.; Tsujimura, K.; Sanosaka, T.; Juliandi, B.; Semi, K.; Namihira, M.; Komiya, S.; Smith, A.; Nakashima, K.; (2012) Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells; 30(6): 1163-1173.##Geffner, L.F.; Santacruz, M.; Izurieta, M.; Flor, L.; Maldonado, B.; Auad, A. H.; Montenegro, X.; Gonzalez, R.; and Silva. F.; (2008)."Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies". Cell Transplant; 17(12): 1277-1293.##Gomez-Barrena, E.; Rosset, P.; Muller, I.; Giordano, R.; Bunu, C.; Layrolle, P.; Konttinen, Y.T.;and Luyten, F.P.; (2011). "Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology." J Cell Mol Med; 15(6): 1266-1286.##Hawryluk, G.W.; Mothe, A.J.; Chamankhah, M.; Wang, J.; Tator, C.; and Fehlings, M.G.;(2012)."In vitro characterization of trophic factor expression in neural precursor cells." Stem Cells Dev; 21(3): 432-447.##Hofstetter, C. P.; Holmstrom, N.A.; Lilja, J.A.; Schweinhardt, P.; Hao, J.; Spenger, C.; Wiesenfeld-Hallin, Z.; Kurpad, S.N.; Frisen, J.; and Olson. L; (2005)."Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome." Nat Neurosci; 8(3): 346-353.##Hulsebosch, C.E.; (2002). "Recent advances in pathophysiology and treatment of spinal cord injury." Adv Physiol Educ; 26(1-4): 238-255.##Javadi, M.; Hafezi-Nejad, N.; Vaccaro, A.R.; and Rahimi-Movaghar. V.; (2014). "Medical complications and patient outcomes in Iranian veterans with spinal cord injury." Adv Clin Exp Med; 23(2): 269-275.##Kang, J.H.; Lee, C.K.; Kim, J.R.; Yu, S.J.; Jo, J.H.; Do, B.R.; Kim, H.K.; and Kang, S.G.;(2007). "Estrogen stimulates the neuronal differentiation of human umbilical cord blood mesenchymal stem cells (CD34-)." Neuroreport; 18(1): 35-38.##Kanno, H.; (2013). "Regenerative therapy for neuronal diseases with transplantation of somatic stem cells." World J Stem Cells; 5(4): 163-171.##Keirstead, H. S.; Nistor, G.; Bernal, G.; Totoiu, M,; Cloutier, F,; Sharp, K.; and Steward. O,; (2005). "Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury." J Neurosci; 25(19): 4694-4705.##Khazaei, M.; Siddiqui, A.M.; and Fehlings, M.G.; (2014). "The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges." J Clin Med; 4(1): 37-65.##Krejci, E.; and Grim, M.; (2010). "Isolation and characterization of neural crest stem cells from adult human hair follicles." Folia Biol (Praha); 56(4): 149-157.##Lee, S. T.; Chu, K.;  Jung, K.H.; Im, W.S.; Park, J.E.; Lim, H.C.; Won,C.H.; Shin, S.H.; Lee, S.K.; Kim, M.; and Roh, J.K.; (2009). "Slowed progression in models of Huntington disease by adipose stem cell transplantation." Ann Neurol; 66(5): 671-681.##Lujan, E.; Chanda, S.; Ahlenius, H.; Sudhof, T.C.; and Wernig, M.; (2012). "Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells." Proc Natl Acad Sci USA; 109(7): 2527-2532.##Mariano, E.D.; Batista, C.M.; Barbosa, B.J.; Marie, S.K.; Teixeira, M.J.;  Morgalla, M.; Tatagiba, M.; Li, J.; and Lepski, G.; (2014). "Current perspectives in stem cell therapy for spinal cord repair in humans: a review of work from the past 10 years." Arq Neuropsiquiatr; 72(6): 451-456.##Marro, S.; Pang, Z.P.; Yang, N.; Tsai, M.C.; Qu, K.; Chang, H.Y.; Sudhof, T.C.; and M. Wernig.;(2011). "Direct lineage conversion of terminally differentiated hepatocytes to functional neurons." Cell Stem Cell; 9(4): 374-382.##Martini, M.; Jeremias, S.; Tda, S.; Kohler, M.C.; Marostica, L.L.; Trentin, A.G.; and Alvarez-Silva, M.; (2013). "Human placenta-derived mesenchymal stem cells acquire neural phenotype under the appropriate niche conditions." DNA Cell Biol; 32(2): 58-65.##McDonald, J.W.; Liu, X.Z.; Qu, Y.; Liu, S.; Mickey, S.K.; Turetsky, D.; Gottlieb, D.I.; and Choi. D.W.; (1999). "Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord." Nat Med; 5(12): 1410-1412.##Moreno-Manzano, V.; Rodriguez-Jimenez, F.J.; Garcia-Rosello, M.; Lainez, S.; Erceg, S.; Calvo, M.T.; Ronaghi, M.; Lloret, M.; Planells-Cases, R.; Sanchez-Puelles, J.M.; and Stojkovic, M.; (2009). "Activated spinal cord ependymal stem cells rescue neurological function." Stem Cells; 27(3): 733-743.##Morshead, C. M.; Reynolds, B.A.; Craig, C.J.; McBurney, M.W.; Staines, W.A.; Morassutti, D.; Weiss, S.; and Van der Kooy, D.; (1994). "Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells." Neuron; 13(5): 1071-1082.##Mothe, A. J.; and Tator, C.H.; (2012). "Advances in stem cell therapy for spinal cord injury." J Clin Invest; 122(11): 3824-3834.##Nistor, G. I.; Totoiu, M.O.; Haque, N.; Carpenter, M.K.; and Keirstead, H.S.; (2005). "Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation." Glia; 49(3): 385-396.##Ostenfeld, T.; Joly, E.; Tai, Y.T.; Peters, A.; Caldwell, M.; Jauniaux, E.; and Svendsen, C.N.;(2002). "Regional specification of rodent and human neurospheres." Brain Res Dev Brain Res; 134(1-2): 43-55.##Park, J. H.; Kim, D.Y.; Sung, I.Y.; Choi, G.H.; Jeon, M.H.; Kim, K.K.; and Jeon, S.R.; (2012). "Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans." Neurosurgery; 70(5): 1238-1247; discussion 1247.##Piao, J. H.; Odeberg, J.; Samuelsson, E.B.; Kjaeldgaard, A.; Falci, S.;  Seiger, A.; Sundstrom, E.; and Akesson, E.; (2006). "Cellular composition of long-term human spinal cord- and forebrain-derived neurosphere cultures." J Neurosci Res; 84(3): 471-482.##Ra, J. C.; Shin, I.S.; Kim, S.H.;  Kang, S.K.; Kang, B.C.; Lee, H.Y.; Kim, Y.J.;  Jo, J.Y.; Yoon, E.J.; Choi, H.J.; and Kwon, E.; (2011). "Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans." Stem Cells Dev; 20(8): 1297-1308.##Reubinoff, B.E.; Itsykson, P.; Turetsky, T.; Pera, M.F.; Reinhartz, E.; Itzik, A.; and Ben-Hur, T.; (2001). "Neural progenitors from human embryonic stem cells." Nat Biotechnol; 19(12): 1134-1140.##Sahni, V.; and Kessler, J.A.; (2010) "Stem cell therapies for spinal cord injury." Nat Rev Neurol; 6(7): 363-372.##Sharp, J.; Frame, J.; Siegenthaler, M.; Nistor, G.; and Keirstead, H.S.; (2010). "Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury." Stem Cells; 28(1): 152-163.##Sykova, E.; Homola, A.; Mazanec, R.; Lachmann, H.; Konradova, S.L.; Kobylka, P.; Padr, R.; Neuwirth, J.; Komrska, V.; Vavra, V.; Stulik, J.; and Bojar, M.; (2006). "Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury." Cell Transplant; 15(8-9): 675-687.##Szabo, E.S.; Rampalli, R.M.; Risueno, A.; Schnerch, R.; Mitchell, A.; Fiebig-Comyn, M.; Levadoux-Martin, M.; Bhatia, (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature; 468(7323): 521-526.##Tator, C.P.P.; (2009). Acute clip impact-compression model. In: Chen J, Xu ZC, Xiao-Ming X, Zhang JH, eds. Animal Models of Acute Neurological Injuries. York, New York, USA: Humana Press; 449-460.##Tator, C.H.; (1995). "Update on the pathophysiology and pathology of acute spinal cord injury." Brain Pathol; 5(4): 407-413.##Tator, C.H.; (2006). "Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations." Neurosurgery; 59(5): 957-982; discussion 982-957.##Tator, C. H.; and Fehlings, M.G.; (1991). "Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms." J Neurosurg; 75(1): 15-26.##Tetzlaff, W.; Okon, E.B.; Karimi-Abdolrezaee, S.; Hill, C.E.; J. Sparling, J.S.; Plemel, J.R.; Plunet, W.T.; Tsai, E.C.; Baptiste, D.; Smithson, L.J.; Kawaja, M.D.; Fehlings, M.G.; and Kwon, B.K.; (2011). "A systematic review of cellular transplantation therapies for spinal cord injury." J Neurotrauma; 28(8): 1611-1682.##Thomas, K.E.; and Moon, L.D.; (2011). "Will stem cell therapies be safe and effective for treating spinal cord injuries?" Br Med Bull; 98: 127-142.##Thuret, S.; Moon, L.D.; and Gage, F.H.; (2006). "Therapeutic interventions after spinal cord injury." Nat Rev Neurosci; 7(8): 628-643.##Tropepe, V.; Hitoshi, S.; Sirard, C.; Mak, T.W.; Rossant, J.; and Van der Kooy, D.; (2001). "Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism." Neuron; 30(1): 65-78.##Tsuji, O.; Miura, K.; Okada, Y.; Fujiyoshi, K.; Mukaino, M.; Nagoshi, N.; Kitamura, K.; Kumagai, G.; Nishino, M.; Tomisato, S.; Higashi, H.; Nagai, T.; Katoh, H.; Kohda, K.; Matsuzaki, Y.; Yuzaki, M.; Ikeda, E.; Toyama, Y.; Nakamura, M.; Yamanaka,S.; and Okano, H.; (2010)."Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury." Proc Natl Acad Sci USA; 107(28): 12704-12709.##Wada, T.; Honda, M.; Minami, H.; Tooi, N.;  Amagai, Y.; Nakatsuji, N.; and Aiba, K.; (2009)."Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells." PLoS One; 4(8): e6722.##Wang, T.T.; Tio, M.; Lee, W.; Beerheide, W.; and Udolph, G.; (2007). "Neural differentiation of mesenchymal-like stem cells from cord blood is mediated by PKA." Biochem Biophys Res Commun; 357(4): 1021-1027.##Wichterle, H.; Lieberam, I.; Porter, J.A.; and Jessell, T.M.; (2002). "Directed differentiation of embryonic stem cells into motor neurons." Cell; 110(3): 385-397.##Wright, K. T.; Masri, W.; Osman, A.; Chowdhury, J.; and Johnson, W.E.; (2011)."Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications." Stem Cells; 29(2): 169-178.##Yan, J.; Welsh, A.M.; Bora, S.H.;  Snyder, E.Y.; and Koliatsos, V.E.; (2004). "Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord." J Comp Neurol; 480(1): 101-114.##Yoon, S. H.; Shim, Y.S.; Park, Y.H.; Chung, J.K.; Nam, J.H.; Kim, M.O.; Park, H.C.; Park, S.R.; Min, B.H.; Kim, E.Y.; Choi,  B.H.; Park, H.; (2007). "Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial." Stem Cells; 25(8): 2066-2073.##Zhang, S. C.; Wernig, M.;  Duncan, I.D.; Brustle, O.; and Thomson, J.A.; (2001). "In vitro differentiation of transplantable neural precursors from human embryonic stem cells." Nat Biotechnol; 19(12): 1129-1133.##Zhao, Y.; Glesne, D.; and Huberman, E.; (2003). "A human peripheral blood monocyte-derived subset acts as pluripotent stem cells." Proc Natl Acad Sci USA; 100(5): 2426-2431.##