In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

Abstract

Biofilm is a complex community of microorganisms residing within a polysaccharide and/or protein matrix. Biofilm can be produced by microorganisms such as bacteria and fungi. Both gram positive and gram negative bacteria have this ability. Resistance of biofilm to antimicrobial agents is becoming a global issue. Bacterial biofilms are important in various aspects such as chronic human infections, dental plaque, infection of indwelling medical devices like catheters; animal and plant diseases and they are also a major problem in industries and food processing units. It is estimated that more than 80% of all microbial infections are caused by biofilms. The aim of this study was to describe biofilm and the importance of bacterial biofilms. We discoursed about resistance of bacteria in biofilm phase; and finally, the known anti-biofilm mechanisms have been discussed. Also, due to the importance of plant compounds for treatment of bacterial infections and as, there has been increased interest in controlling of bacterial infections by these substances, some recent studies in this field (plant compounds as anti-biofilm agents) have been expressed.

Keywords

Alipour, M.; Suntres, ZE.; Omri, A.; (2009). Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. Journal of Antimicrobial and Chemotherapy; 64: 317-325.##Applerot, G.; (2012). ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv; 2: 2314-2321.##Arciola, CR.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, JW.; (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials; 33; 5967-5982##Banat, IM.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, MG.; Fracchia, L.; (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology; 87: 427-444.##Brown, MRW.; Allison, DJ.; Gilbert, P.; (1988). Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?. Journal of Antimicrobial Chemotherapy; 22(6): 777-780.##Ciofu, O.; Mandsberg, LF.; Wang, H.; Hoiby, N.; (2012). Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunology and Medical Microbiology; 65(2): 215-225.##Coenye, T.; Brackman, G.; Rigole, P.; (2012). Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine; 19(5): 409-412.##Costerton, JW.; (1999). Introduction to biofilm. International Journal of Antimicrobial Agents; 11(3-4),217-221.##Costerton, JW.; Stewart, PS.; Greenberg. EP.; (1999). Bacterial biofilms: a common cause of persistent infections. Science; 284(5418): 1318-1322.##Davies. J.; Ryan, KS.; (2012). Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol; 7: 252-259.##Donlan, RM.; (2001). Biofilms and device-associated infections. Emerg Infect Dis; 7: 277-281.##Donlan, RM.; (2009). Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in Microbiology; 17: 66-72.##Donlan, RM.; Costerton, JW.; (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Review; 15: 167-193.##Dror, N.; Mandel, M.; Hazan, Z.; Lavie, G.; (2009). Advances in Microbial Biofilm Prevention on Indwelling Medical Devices with Emphasis on Usage of Acoustic Energy; 9: 2538-2554.##Flemming, HC.; Wingender, J.; (2010). The biofilm matrix. Nature Review Microbiology; 8: 623-633.##Gibbons, S.; Udo, EE.; (2000). The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother Res; 14: 139-40.##He, Z.; Wang, Q.; Hu, Y.; Liang, J.; Jiang, Y.; Ma, R.; Tang, Z.; Huang, Z.; (2012). Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. International Journal of Antimicrobial Agents; 40: 30-35.##Issac Abraham, SVP.; Palani, A.; Khadar, SM.; Shunmugiah, KP.; Arumugam, VR.; (2012). Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Research International; 45: 85-92.##Jansen, B.; Kohnen, W.; (1995). Prevention of biofilm formation by polymer modification. J Ind Microbiol; 15: 391-396.##Kaplan, JB.; (2010). Biofilm Dispersal: Mechanisms, Clinical Implications, and Potential Therapeutic Uses. Journal of Dental Research; 89: 205-218.##Kaplan, JB.; Ragunath, C.; Ramasubbu, N.; Fine. DH.; (2003). Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous β-hexosaminidase activity. Journal of Bacteriology; 185: 4692-4698.##Khan, IA.; Mirza, ZH.; Kumar, A.; Verma, V.; NabiQazi, G.; (2006). Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob Agents Chemother; 50: 810-812.##Klebensberger, J.; Birkenmaier, A.; Geffers, R.; Kjelleberg, S.; Philipp, B.; (2009). SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ Microbiology; 11: 3073-3086.##Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, SJ.; (2013). Bacterial biofilms: development, dispersal and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring HarbPerspect Med; 3: 1-23.##Kvist, M.; Hancock, V.; Klemm, P.; (2008). Inactivation of Efflux Pumps Abolishes Bacterial Biofilm Formation. Applied and Environmental Microbiology; 74(23): 7376-7382.##Lellouche, J.; Friedman, A.; Gedanken, A.; Banin, E.; (2012). Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. International Journal of Nanomedicine; 7: 5611-5624.##Ma, H.; Bryers, JD.; (2013). Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Applied Microbiology and Biotechnology; 97(1): 317-328.##Meng, X.; Shi, Y.; Ji, W.; Meng, X.; Zhang, J.; Wang, H.; Lu, C.; Sun, J.; Yan, Y.; (2011). Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis. Applied and Environmental Microbiology: 8272-8279.##Musee, N.; (2011). The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. Journal of Environmental Monitoring; 13: 1164-1183.##Neyfakh, AA.; Bidnenko, VE.; Chen, LB.; (1991). Efflux-mediated multi-drug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. ProcNatlAcadSci USA; 88: 4781-4785.##Nitschke, M.; Araújo, V.; Costa, SGVAO.; Pires, RC.; Zeraik, AE.; (2009). Surfactin reduces the adhesion of food-borne pathogenic bacteriato solid surface. Letters in Applied Microbiology; 49: 241-247.##Nitschke, M.; Costa, SGVAO.; Contiero, J.; (2010). Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Applied Biochemistry and Biotechnology; 160: 2066-2074.##Ramsey, BW.; (1996). Management of pulmonary disease in patients with cystic fibrosis. The New England Journal of Medicine; 335(3): 179-188.##Ravichandiran, V1.; Shanmugam, K.; Anupama, K.; Thomas, S.; Princy, A.; (2012). Structure-based virtual screening for plant-derived SdiA-selective ligands as potential antivirulent agents against uropathogenic Escherichia coli. Eur J Med Chem; 48: 200-205.##Ren, D.; Zuo, R.; Gonza´lez Barrios, AF.; Bedzyk, LA.; Eldridge, GR.; Pasmore, ME.; Wood, TK.; (2005).  Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol; 71: 4022-4034.##Sandasi, M.; Leonard, CM.; Van Vuuren, SF.; Viljoen, AM.; (2011). Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. South African Journal of Botany; 77: 80-85.##Sangiliyandi, G.; Jae, WH.; Deug-Nam, K.; Jin-Hoi, K.; (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Research Letters; 9(373): 1- 17.##Sutherland, IW.; Hughes, KA.; Skillman, LC.; Tait, K.; (2004). The interaction of phage and biofilms. FEMS Microbiology Letters; 232: 1-6.##Taj, Y.; Essa, F.; Aziz, F.; Kazmi, SU.; (2012). Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. Journal of Infection in Developing Countries; 6(5): 403-409.##Truchado, P.; Lopez-Galvez, F.; Gil, MI.; Tomas-Barberan, FA.; Allende, A.; (2009). Quorum sensing inhibitory and antimicrobial activities of honeys and the relationship with individual phenolics. Food Chemistry; 115: 1337-1344.##Walters,  MC.; Roe, F.; Bugnicourt, A.; Franklin. MJ.; (2003). Stewart. PS.; Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy; 47(1): 317-323.##Watnick, P.; Kolter, R.; (2000). Biofilm, city of microbes. Journal of Bacteriology; 182: 2675-2679.##