In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Author

Assistant Professor, Ferdowsi University

Abstract

 
Abstract
Geographic information system (GIS), science and tecnology of georefrence datas analysis, can assimilate many parameters at once and this ability with modelling statistic bases supplies a suitable set of appling ecological models for ecologists. One of these ecological models is habitat model for wildlife species that it is important in fild of managemant and conservation wildlife species. Models predicting the spatial distribution of species and suitability habitat are currently gaining interest. As they often help both in understanding species niche requirements, their use has been especially promoted to tackle conservation issues, such as managing species distribution, assessing ecological impacts of various factors (e.g. pollution, climate change), risk of biological invasions or endangered species management.  Accordingly, we explore the habitat models to introduce the approach to wildlife managers.
 

Keywords

Alizadeh, A.; (2006). Identifying bird species as biodiversity indicators for terrestrial ecosystem management, PhD thesis, RMIT University, Melbourne, Australia, pp 173.
Anderson, M.C.; Watts, J.M.; Freilich, J.E.; Yool, S.R.; Wakefield, G.I.; Mccaulery, J.F.; Fahnestock, A.;(1999). Regression-tree modeling of desert tortoise habitat in the centeral Mojave desert. Ecological application; 10: 890-897.
Anderson, R. P.; Lew, D.; Peterson, A.T.; (2003). Evaluating predictive models of species’ distributions criteria for selecting optimal models. Ecological Modelling; 162: 211-232.
Aspinall, R.; (1992). An inductive modeling procedure based on Bayes Theorem for analysis of pattern in spatial data. Geographical Information Systems; 6: 105-121.
Browning, D. M.; Beaupr, S. J.; Duncan, L.; (2005). Using partitioned Mahalanobis D2(K) to formulate a GIS-based model of timber rattlesnake hibernacula. Journal of Wildlife Management; 69: 33-44.
Browning, D.M.; Beaupr, S.J.; Duncan, L.; (2005). Using partitioned Mahalanobis D2(K) to formulate a GIS-based model of timber rattlesnake hibernacula. Journal of Wildlife Management; 69: 33-44.
Busby, J.R.; (1991). BIOCLIM–a bioclimate analysis and prediction system. In: Nature Conservation: Cost Effective Biological Surveys and Data Analysis (eds Margules, C.R. and Austin, M.P.). CSIRO, Melbourne, 64-68 pp.
Busby, J.R.; (1991). BIOCLIM–a bioclimate analysis and prediction system. In: Nature Conservation: Cost Effective Biological Surveys and Data Analysis (eds Margules, C.R. and Austin, M.P.). CSIRO, Melbourne, 64-68 pp.
Carey, P.D.; (1996). DISPERSE: a cellular automaton for predicting the distribution of species in a changed climate. Global Ecology and Biogeography Letter; 5: 217-226.
Carpenter, G.; Gillison, A.N.; Winter, J.; (1993). DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conservation; 2: 667-680.
Clark, J.D.; (1993). A multivariate model of female Black Bear habitat use for a geographic information system. Journal of Wildlife Management; 57(3): 519-526.
Clark, J.S.; (1991) Disturbance and tree life history on the shifting mosaic landscape. Ecology; 72: 1102-1118.
Costa, J.; Peterson, T.; Beard, C.B.; (2002). Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis neiva, 1911, the most important chagas, disease vector in northeastern Brazil (Hemiptra, Reduviidae, Triatominae). Tropical Medicine and Hygiene; 67(5): 516-520.
Decoursey, D.G.; (1992). Developing models with more detail: do more algorithms give more truth? Weed Technology; 6: 709-715.
Dunn, J.E.; Duncan, L.; (2000). Partitioning Mahalanobis D2 to sharpen GIS classificaton. In: Management Information Systems 2000: GIS and Remote Sensing (eds Brebbia CA, Pascolo P), 195-204. WIT Press, Southampton.
Ferrier, S.; Drielsma, M.; Manion, G.; Watson, G.; (2002). Extended statistical approaches to modelling spatial pattern in biodiversity in north-east New South Wales. II. Communitylevel modelling. Biodivers. Conservation; 11: 2309-2338.
Griffin, S.C.; Taper, M.L.; Hoffman, R.; Mills, L.S.; (2010). Ranking Mahalanobis distance models for predictions of occupancy from presence-only data. Journal of Wildlife Management; 74(5): 1112-1121
Grinnell, J.; (1917). The niche-relationships of the California thrasher, Auk. 427-433.
Guisan, A.; Zimmermann, N.E.; (2000). Predictive habitat distribution models in ecology. Ecological Modelling; 135: 147-186.
Harrell, F.E.; Lee, K.L.; Mark, D.B.; (1996). Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med.; 15: 361-387.
Hijmans, R.J.; Guarino, L.; Cruz, M.; Rojas, E.; (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter; 127: 15-19.
Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N.; (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology; 83(7): 2027-2036.
Hirzel, A.H.; Helfer, V.; Métral, F.; (2001). Assessing habitat-suitability models with a virtual species. Ecological Modelling; 145(2): 111-121.
Hirzel, A.H.; Le Lay, G.; (2008). Habitat suitability modelling and niche theory. Applied Ecology; 45: 1372-1381.
Hirzel, A.H.; Posse, B.; Oggier, P.A.; Crettenand, Y.; Glenz, C.; Arlettaz, R.; (2004). Ecological requirements of a reintroduced species, with implications for release policy: the bearded vulture recolonizing the Alps. Journal of Applied Ecology; 41: 1103-1116.
Korzukhin, M.D.; Ter-Mikaelian, M.T.; Wagner, R.G.; (1996). Process versus empirical models: which approach for forest ecosystem management? Forest Research; 26: 879-887.
Lehmann, A.; Overton, J.M.; Leathwick, J.R.; (2002). GRASP: generalized regression analysis and spatial prediction. Ecological. Modelling; 157: 189-207.
Levins, R.; (1966). The strategy of model building in population ecology, American Scientist; 421: 421-431.
Nix, H.; McMahon, J.; Mackenzie, D.; (1977). Potential areas of production and the future of pigeon pea and other grain legumes in Australia. In: The potential for pigeon pea in Australia. Proceedings of Pigeon Pea (Cajanus cajan (L.) Millsp.) Field Day. (Eds: Wallis, E.S., Whiteman, P.C.). University of Queensland. Queensland. Australia. 5/1–5/12.
Pearson, R.G.; Dawson, T.P.; Berry, P.M.; Harrison, P.A.; (2002). SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecological Modelling; 154: 289-300.
Peterson, A. T.; Cohoon, K. P.; (1999). Sensitivity of distributional prediction algorithms to geographic data completeness, Ecological Modelling; 117: 159-164.
Peterson, A. T.; Stockwell, D. R. B.; Kluza, D. A.; (2002). Distributional prediction based on ecological niche modeling of primary occurrence data. In: Scott, J. M., P. J. Heglund., M. L. Morrison, J.B. Haufler., M. G. Raphael., W. A. Wall and F. B. Samson, Editors, Predicting Species Occurrences. Issues of Accuracy and Scale, Island Press, Washington, 617-623.
Peterson, A.T.; Lash, R.R.; Carroll, D.S.; Johnson, K.M.; (2006). Geographic potential for outbreaks of Marburg hemorrhagic fever. American Journal of Tropical Medicine and Hygiene; 75(1): 9-15.
Peterson, A.T.; Lash, R.R.; Carroll, D.S.; Johnson, K.M.; (2006). Geographic potential for outbreaks of Marburg hemorrhagic fever. American Journal of Tropical Medicine and Hygiene; 75(1): 9-15.
Phillips, S.J.; Anderson, R.P.; Schapired, R.E.; (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling; 190: 231-259.
Pickett, S.T.A.; Kolasa, G.; Jones, C.G.;  (1994). Ecological Understanding: the Nature of Theory and the Theory of Nature. Academic Press, New York.
Prentice, I.C.; (1986). Some concepts and objectives of forest dynamics research. In: Fanta, J. (Ed.), Forest Dynamics Research in Western and Central Europe. PUDOC, Wageningen, 32-41.
Rotenberry, J.T.; Knick, S.T.; Dunn, J.E.; (2002). A minimalist approach to mapping species' habitat: Pearson's planes of closest fit. Pages 281-289 in Scott, J. M., Heglund, P. J., Morrison, M. L., Haufler, J. B., Raphael, M. G., Wall, W. A., Samson, F. B. editors. Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, D.C., USA.
Rotenberry, J.T.; Knick, S.T.; Dunn, J.E.; (1999). A minimalist approach to mapping species habitat: Pearson's planes of closest fit. Predicting Species Occurrence: Issues of Scale and Accuracy, conference, Snowbird, Utah.
Rushton, S.P.; Ormerod, S.J.; Kerby, G.; (2004). New paradigms for modeling species distributions? Journal of Applied Ecology; 41(2): 193-200.
Sharpe, P.J.A.; (1990). Forest modeling approaches: compromises between generality and precision. In: Process Modeling of Forest Growth Responses to Environmental Stress. (Eds: Dixon, R.K., Meldahl, R.S., Ruark, G.A., Warren, W.G.). Timber Press, Portland, OR. 180-190.
Sharpe, P.J.A.; Rykiel, E.J.; (1991). Modeling integrated response of plants to multiple stress. In: Response of Plants to Multiple Stress. (Eds: Mooney, H.A., Winner, W.E., Pell, E.J.). Academic Press, San Diego, CA. 205-224.
Stockwell, D.; Noble, I. R.; (1991). Induction of sets of rules from animal distribution data: a robust and informative method of data analysis, Mathematics and Computers in Simulation; 32: 249-254.
Stockwell, D.; Peters, D.; (1999). The GARP modelling system: problems and solutions to automated spatial prediction, Geographic Information Systems; 13: 143-158.
Stockwell, D.; Peterson, A.T.; (2002). Effects of sample size on accuracy of species distribution models, Ecolgical Modelling; 148: 1-13.
Strubbe, D.; Matthysen, E.; (2009). Predicting the potential distribution of invasive ring-necked parakeets Psittacula krameri in northern Belgium using an ecological niche modelling approach. Biological Invasions; 11: 497-513.
Termansen, M.; McClean, C. J.; Preston, C.D.; (2006). The use of genetic algorithms and Bayesian classification to model species distribution, Ecological Modelling; 192: 410-424.
Von Humboldt, A.; Bonpland, A.; (1807). Essai sur la ge´ographie des plantes. Paris.
Zimmermann, N.E.; Kienast, F.; (1999). Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science; 10: 469-482.