In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Review Article

Authors

1 ‎Department of Animal Science, ‎Faculty of Agriculture, Shahrekord ‎University, Shahrekord, Iran

2 ‎Iranian Shrimp Research Center, ‎Iranian Fisheries Science Research ‎Institute, Agricultural Research, ‎Education & Extension Organization ‎‎(AREEO), Bushehr, Iran‎

10.30473/eab.2025.73409.1977

Abstract

In aquaculture, disease prevention through elimination, eradication and cultural control are inefficient, costly and unstable solutions. Breeding programs for genetic improvement of disease resistance lead to a long-term sustainable disease control. Mass selection of survivors in contaminated ponds is a classic method for improving disease resistance. In this method, by collecting survivors from virus-infected pools and selecting after several generations, an increase in survival rate is created. Another method is to use a disease challenge test, which exposes different families to live virus and selects the best families. Modern genetic approaches for disease resistance include the use of microsatellite markers, Genome-wide association studies (GWAS), Genomic selection (GS) and CRISPR, which are reviewed in this article. Microsatellite markers are used for genotyping of breeding stock and monitor the genetic diversity of populations. GWAS to survey genotype-phenotype association lead to the identification of genomic regions affecting disease resistance. GS is the most advanced method for use in aquaculture breeding programs. CRISPR/Cas9-mediated genome editing and transgenesis by antimicrobial peptide genes (AMGs) have been found to be effective on the innate immune system of fish. Development of lines resistant to specific diseases and crossing them to produce hybrids are available solutions, and producing disease-resistant transgenic fish is a prospect for improving disease resistance in aquatic animals.

Keywords

Main Subjects

Chaijarasphong, T., Thammachai, T., Itsathitphaisarn, O., Sritunyalucksana, K., & Suebsing, R. (2019). Potential application of CRISPR-Cas12a fluorescence assay coupled with rapid nucleic acid amplification for detection of white spot syndrome virus in shrimp. Aquaculture512, 734340.
Chen, J., Fan, Z., Tan, D., Jiang, D., & Wang, D. (2018). A review of genetic advances related to sex control and manipulation in tilapia. Journal of the World Aquaculture Society49(2), 277-291.
Cleveland, B. M., Yamaguchi, G., Radler, L. M., & Shimizu, M. (2018). Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Scientific reports8(1), 16054.
Ding, J., Zhang, Y., Wang, J., Liu, C., Gao, X., Wu, Y., ... & Shen, W. (2022). Genome-wide association study identified candidate SNPs and genes associated with hypoxia tolerance in large yellow croaker (Larimichthys crocea). Aquaculture560, 738472.
Farasati, S., Khoshkholgh, M., & Yarmohammadi, M. (2020). Genetic diversity of cultured beluga sturgeon (Huso huso) brood stocks by using Microsatellite method. Aquatic Physiology and Biotechnology8(8), 55-72.
Ferdous, M. A., Islam, S. I., Habib, N., Almehmadi, M., Allahyani, M., Alsaiari, A. A., & Shafie, A. (2022). CRISPR-Cas genome editing technique for fish disease management: current study and future perspective. Microorganisms10(10), 2012.
Fu, S., & Liu, J. (2022). Genome-wide association study identified genes associated with ammonia nitrogen tolerance in Litopenaeus vannamei. Frontiers in Genetics13, 961009.
Ghavampour, A., Salari Aliabadi, M. A., Zolgharneen, H., & Archangi, B. (2024). Molecular Assessment of Banana Shrimp (Fenneropenaeus merguiensis) Populations in Persian Gulf Fishing Areas Using Microsatellite Markers. Journal of Marine Science and Technology23(4), 73-87.
Gjedrem, T., & Baranski, M. (2010). Selective breeding in aquaculture: an introduction (Vol. 10). Springer Science & Business Media.
Gjerde, B., Pante, M. J. R., & Baeverfjord, G. (2005). Genetic variation for a vertebral deformity in Atlantic salmon (Salmo salar). Aquaculture244(1-4), 77-87.
 Gjøen, H. M., Refstie, T., Ulla, O., & Gjerde, B. (1997). Genetic correlations between survival of Atlantic salmon in challenge and field tests. Aquaculture, 158(3-4), 277-288.
Gorjipoor, E., & Nazari, S. (2014). Genetic variation in farmed population of Rainbow trout (Onchorhynchus mykiss) based on microsatellite markers in Iran. Iranian Scientific Fisheries Journal22(4), 93-106.
Grimholt, U., Drabløs, F., Jørgensen, S., Høyheim, B., & Stet, R. J. (2002). The major histocompatibility class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkage analysis and protein modelling. Immunogenetics54, 570-581.
Houston, R. D. (2017). Future directions in breeding for disease resistance in aquaculture species. Revista Brasileira de Zootecnia46, 545-551.
Jiang, D. N., Yang, H. H., Li, M. H., Shi, H. J., Zhang, X. B., & Wang, D. S. (2016). gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia. Molecular Reproduction and Development83(6), 497-508.
Karami nasab, M., Hosseinnia, Z., Kolangi Miandare, H., & Shabany, A. (2014). Genetic diversity of Barbus grypus in the Karkheh River in Khuzestan Province and cultured fish studied using a microsatellite marker. GEBSJ, 3 (2), 114-123
Kishimoto, K., Washio, Y., Yoshiura, Y., Toyoda, A., Ueno, T., Fukuyama, H., ... & Kinoshita, M. (2018). Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture495, 415-427.
Kumar, P., Gupta, V. K., Misra, A. K., Modi, D. R., & Pandey, B. K. (2009). Potential of molecular markers in plant biotechnology. Plant omics2(4), 141-162.
Li, Y., Jia, Z., Zhang, S., & He, X. (2021). Progress in gene-editing technology of zebrafish. Biomolecules, 11(9), 1300.
Liu, K., Petree, C., Requena, T., Varshney, P., & Varshney, G. K. (2019). Expanding the CRISPR toolbox in zebrafish for studying development and disease. Frontiers in cell and developmental biology, 7, 13.
Liu, Z. J., & Cordes, J. F. (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture238(1-4), 1-37.
Liu, Z., Karsi, A., & Dunham, R.A. (1999). Development of polymorphic EST markers suitable for genetic linkage mapping of catfish. Marine Biotechnology1, 437-447.
Liyanage, D. S., Lee, S., Yang, H., Lim, C., Omeka, W. K. M., Sandamalika, W. G., ... & Lee, J. (2022). Genome-wide association study of VHSV-resistance trait in Paralichthys olivaceus. Fish & Shellfish Immunology124, 391-400.
Lu, S., Zhu, J., Du, X., Sun, S., Meng, L., Liu, S., ... & Chen, S. (2020). Genomic selection for resistance to Streptococcus agalactiae in GIFT strain of Oreochromis niloticus by GBLUP, wGBLUP, and BayesCπ. Aquaculture523, 735212.
Luo, H., Pan, X., Huang, Y., Li, Z., Ye, H., Zhou, K., ... & Lin, Y. (2023). Genome-wide association study reveals markers and candidate genes associated with growth in the rice flower carp, an economic fish species of integrated rice-fish culture in China. Frontiers in Marine Science10, 1130667.
Mansour, M., Wright Jr, J. R., & Pohajdak, B. (1998). Cloning, sequencing and characterization of the tilapia insulin gene. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology121(3), 291-297.
Megahed, M. E. (2020). Genetic selection for improved disease resistance in aquaculture with special reference to shrimp and tilapia breeding programs in Egypt. Journal of Applied Aquaculture 32(4), 291-340.
Meuwissen, T. H., Hayes, B. J., & Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics157(4), 1819-1829.
Nie, C., Wan, S., Chen, Y., Zhu, D., Wang, X., Dong, X., & Gao, Z. X. (2021). Loss of scleraxis leads to distinct reduction of mineralized intermuscular bone in zebrafish. Aquaculture and Fisheries6(2), 169-177.
Norouzi, M., & Behrouz, M. (2016). Microsatellite DNA analyses of the genetic structure of golden mullet (Liza aurata). Iranian Scientific Fisheries Journal, 25(2), 183-195.
Olesen, I., Groen, A. F., & Gjerde, B. (2000). Definition of animal breeding goals for sustainable production systems. Journal of Animal Science78(3), 570-582.
Palaiokostas, C., Vesely, T., Kocour, M., Prchal, M., Pokorova, D., Piackova, V., ... & Houston, R. D. (2019). Optimizing genomic prediction of host resistance to koi herpesvirus disease in carp. Frontiers in Genetics10, 543.
Pasandideh, M. (2018). Detection of quantitative loci affecting growth rate and composite reproductive traits in Baluchi sheep using high density markers. Sari Agricultural Sciences and Natural Resources University, Sari, Iran
Pasandideh, M., Gholizadeh, M., & Rahimi‐Mianji, G. (2020). A genome‐wide association study revealed five SNPs affecting 8‐month weight in sheep. Animal genetics51(6), 973-976.
Pasandideh, M., Gholizadeh, M., & Rahimi-Mianji, G. (2020). Identification of two novel SNPs affecting lambing traits in sheep by using a 50K SNP-Chip. Small Ruminant Research191, 106193.
Pasandideh, M., Rahimi-Mianji, G., & Gholizadeh, M. (2018). A genome scan for quantitative trait loci affecting average daily gain and Kleiber ratio in Baluchi Sheep. Journal of genetics97, 493-503.
Pasandideh, R., Mohamadabadi, M.R., & Pasandideh, M. (2022). The application of genomic selection in improvement of molecular breeding programs in aquaculture. Agricultural Biotechnology Journal, 14 (4), 133-156.
 Rezaee, S., Farahmand, H., & Nematollahi, M. A. (2014). Investigation of the genetic variability in Litopenaeus vannamei shrimp, using SSR markers, in Jask port of Hormozgan province. Journal of Fisheries67(1), 61-74.
Richardson, C., Kelsh, R. N., & J. Richardson, R. (2023). New advances in CRISPR/Cas-mediated precise gene-editing techniques. Disease Models & Mechanisms16(2), dmm049874.
Roy, S., Kumar, V., Behera, B. K., Parhi, J., Mohapatra, S., Chakraborty, T., & Das, B. K. (2022). CRISPR/Cas genome editing—can it become a game changer in future fisheries sector?. Frontiers in Marine Science9, 924475.
Shokoohmand, M., Zolgharneen, H., Laloei, F., Fooroghmand, A. M., & Savari, A. (2011). Genetic variation of Metapenaeus affinis in Persian Gulf coastal waters using microsatellite markers. ISFJ, 20(3), 45-54.
Song, H., Dong, T., Yan, X., Wang, W., Tian, Z., Sun, A., ... & Hu, H. (2023). Genomic selection and its research progress in aquaculture breeding. Reviews in aquaculture15(1), 274-291.
Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., & McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome research, 11(8),1441-1452.
Tóth, G., Gáspári, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome research10(7), 967-981.
Vallejo, R. L., Leeds, T. D., Gao, G., Parsons, J. E., Martin, K. E., Evenhuis, J. P., ... & Palti, Y. (2017). Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture. Genetics Selection Evolution49, 1-13.
Verbyla, K. L., Kube, P. D., & Evans, B. S. (2022). Commercial implementation of genomic selection in Tasmanian Atlantic salmon: Scheme evolution and validation. Evolutionary Applications, 15(4),631-644.
Wang, J., & Cheng, Y. (2024). Enhancing aquaculture disease resistance: Antimicrobial peptides and gene editing. Reviews in Aquaculture16(1), 433-451.
Wu, Y., Wu, T., Yang, L., Su, Y., Zhao, C., Li, L., ... & Zhou, L. (2023). Generation of fast growth Nile tilapia (Oreochromis niloticus) by myostatin gene mutation. Aquaculture562, 738762.
Yanez, J. M., Barria, A., Lopez, M. E., Moen, T., Garcia, B. F., Yoshida, G. M., & Xu, P. (2023). Genome‐wide association and genomic selection in aquaculture. Reviews in Aquaculture15(2), 645-675.
Yu, Y., Wan, S. M., Zhang, S. M., Liu, J. Q., Sun, A. L., Wang, Y., ... & Gao, Z. X. (2024). Identification of SNPs and candidate genes associated with growth using GWAS and transcriptome analysis in Coilia nasus. Aquaculture586, 740777.
Zenger, K. R., Khatkar, M. S., Jones, D. B., Khalilisamani, N., Jerry, D. R., & Raadsma, H. W. (2019). Genomic selection in aquaculture: application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Frontiers in genetics9, 693.
Zhao, J., Bai, H., Ke, Q., Li, B., Zhou, Z., Wang, H., ... & Xu, P. (2021). Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker. Aquaculture531, 735786.
Zhao, M., Thaimuangphol, W., Hong, Y., Yan, Z., Chen, Z., Jin, M., ... & Wang, Z. (2023). Identification of Growth-Related SNPs and Genes in the Genome of the Pearl Oyster (Pinctada fucata) Using GWAS. Fishes8(6), 296.
Zhou, Q., Su, Z., Li, Y., Liu, Y., Wang, L., Lu, S., ... & Chen, S. (2019). Genome-wide association mapping and gene expression analyses reveal genetic mechanisms of disease resistance variations in Cynoglossus semilaevis. Frontiers in Genetics10, 1167.