In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Review Article

Author

Department of Basic Sciences, ‎Faculty of Veterinary Medicine, ‎University of Tabriz, Tabriz, Iran‎

10.30473/eab.2024.71943.1960

Abstract

A review on hibernation was done by extensive search in main databases, using appropriate keywords and reading the newer and more cited articles from more reliable journals. This review investigated biochemical and molecular strategies of hibernating mammals to combat cold and lack of food and water. Growth and survival in times of resource scarcity require behavioral, physiological, cellular, and molecular adaptation in a relatively short time. Hibernation is a set of physiological strategies that allow animals to live in cold and lack food and water. Mammalian hibernation is a physiological state during which animals repeatedly experience periods of torpor and Interbout arousal. Hibernation varies in different kinds of animals. The inactive periods of heterotherms are more like deep sleep than hibernation. Voluntary hibernators enter a dormant period only when food resources are low, the weather is cold, and the season is changing. Obligate hibernations enter the inactive period seasonally, regardless of food availability, ambient temperature, and photoperiod. Obligate hibernating mammals can slow their metabolism, lower their body temperature, and fall into a torpor state. The energy supply is mainly made from fats stored pre-hibernation in this stage. This is associated with the upregulation of enzymes responsible for carbohydrate metabolism and the downregulation of enzymes responsible for fatty acid oxidation during hibernation. Non-stimulation of smell, taste, and oral-pharyngeal and digestive nerves and hormones such as leptin and insulin play a role in the neural suppression of feeding behavior from the hypothalamus. As water leaves the muscles, the plasma osmolality of hibernating animals decreases. Reducing blood osmolality acts as a thirst-suppression message to the brain. Hibernations are tolerant to cold both behaviorally and at the cellular level because the sensory neurons in these animals are less sensitive to cold. Also, hibernators have less cold-sensitive neurons in their hypothalamus. Hibernation is not simply a reduction in body temperature and vital parameters, but an active process that is seasonally regulated at the cellular and molecular levels. This seasonal adaptation is controlled by hormonal, neural, genetic, and epigenetic regulations. As different kinds of animals can hibernate, comparative studies are necessary to discover the central events of hibernation. What we have learned from the mechanism of animals hibernation can be used to develop methods to improve human health. Hibernation strategies can help reduce muscle and bone disuse atrophy, increase limb preservation time, fight obesity, and prevent reperfusion injury following myocardial infarction and stroke. Many questions about hibernation remain to be addressed in future research.

Keywords

Main Subjects

Andrews, M. T. (2019). Molecular interactions underpinning the phenotype of hibernation in mammals. Journal of Experimental Biology, 222(2), jeb160606.
Andrews, M. T., Russeth, K. P., Drewes, L. R., & Henry, P.-G. (2009). Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(2), R383-R393.
Augustine, V., Lee, S., & Oka, Y. (2020). Neural control and modulation of thirst, sodium appetite, and hunger. Cell, 180(1), 25-32.
Blanco, M. B., Dausmann, K. H., Faherty, S. L., Klopfer, P., Krystal, A. D., Schopler, R., & Yoder, A. D. (2016). Hibernation in a primate: does sleep occur? Royal Society Open Science, 3(8), 160282.
Bolborea, M., Pollatzek, E., Benford, H., Sotelo-Hitschfeld, T., & Dale, N. (2020). Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network. Proceedings of the National Academy of Sciences, 117(25), 14473-14481.
Elfeky, M., Tsubota, A., Shimozuru, M., Tsubota, T., Kimura, K., & Okamatsu-Ogura, Y. (2024). Regulation of Mitochondrial Metabolism by Hibernating Bear Serum: Insights into Seasonal Metabolic Adaptations. Biochemical and Biophysical Research Communications, 150510.
Feketa, V. V., Nikolaev, Y. A., Merriman, D. K., Bagriantsev, S. N., & Gracheva, E. O. (2020). CNGA3 acts as a cold sensor in hypothalamic neurons. Elife, 9, e55370.
Feng, N.Y., Junkins, M.S., Merriman, D.K., Bagriantsev, S. N., & Gracheva, E. O. (2019). Osmolyte depletion and thirst suppression allow hibernators to survive for months without water. Current Biology, 29(18), 3053-3058. e3053.
Frare, C., & Drew, K. (2021). Seasonal changes in adenosine kinase in tanycytes of the Arctic ground squirrel (Urocitellus parryii). Journal of chemical neuroanatomy, 113, 101920.
Giroud, S., Habold, C., Nespolo, R. F., Mejías, C., Terrien, J., Logan, S. M., ... Storey, K. B. (2021). The torpid state: recent advances in metabolic adaptations and protective mechanisms. Frontiers in Physiology, 11, 623665.
Guo, Q., Mi, X., Sun, X., Li, X., Fu, W., Xu, S., ... Chang, H. (2017). Remarkable plasticity of Na+, K+-ATPase, Ca2+-ATPase and SERCA contributes to muscle disuse atrophy resistance in hibernating Daurian ground squirrels. Scientific Reports, 7(1), 10509.
Haugg, E., Borner, J., Stalder, G., Kübber‐Heiss, A., Giroud, S., & Herwig, A. (2024). Comparative transcriptomics of the garden dormouse hypothalamus during hibernation. FEBS Open bio, 14(2), 241-257.
Hoffstaetter, L. J., Mastrotto, M., Merriman, D. K., Dib-Hajj, S. D., Waxman, S. G., Bagriantsev, S. N., & Gracheva, E. O. (2018). Somatosensory neurons enter a state of altered excitability during hibernation. Current Biology, 28(18), 2998-3004. e2993.
Horwitz, B. A., Chau, S. M., Hamilton, J. S., Song, C., Gorgone, J., Saenz, M., ... Chen, C.-Y. (2013). Temporal relationships of blood pressure, heart rate, baroreflex function, and body temperature change over a hibernation bout in Syrian hamsters. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 305(7), R759-R768.
Jansen, H. T., Trojahn, S., Saxton, M. W., Quackenbush, C. R., Evans Hutzenbiler, B. D., Nelson, O. L., ... Kelley, J. L. (2019). Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Communications biology, 2(1), 336.
Junkins, M. S., Bagriantsev, S. N., & Gracheva, E. O. (2022). Towards understanding the neural origins of hibernation. Journal of Experimental Biology, 225(1), jeb229542.
Laursen, W. J., Schneider, E. R., Merriman, D. K., Bagriantsev, S. N., & Gracheva, E. O. (2016). Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proceedings of the National Academy of Sciences, 113(40), 11342-11347.
Liu, C., Yu, H., Li, Z., Chen, S., Li, X., Chen, X., & Chen, B. (2024). The future of artificial hibernation medicine: protection of nerves and organs after spinal cord injury. Neural regeneration research, 19(1), 22-28.
MacCannell, A. D., & Staples, J. F. (2021). Elevated ambient temperature accelerates aspects of torpor phenology in an obligate hibernator. Journal of Thermal Biology, 96, 102839.
Masento, N. A., Golightly, M., Field, D. T., Butler, L. T., & van Reekum, C. M. (2014). Effects of hydration status on cognitive performance and mood. British Journal of Nutrition, 111(10), 1841-1852.
Matos-Cruz, V., Schneider, E. R., Mastrotto, M., Merriman, D. K., Bagriantsev, S. N., & Gracheva, E. O. (2017). Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell reports, 21(12), 3329-3337.
Mohr, S. M., Bagriantsev, S. N., & Gracheva, E. O. (2020). Cellular, molecular, and physiological adaptations of hibernation: the solution to environmental challenges. Annual review of cell and developmental biology, 36(1), 315-338.
Oosterhof, M. M., Coussement, L., Guryev, V., Reitsema, V. A., Bruintjes, J. J., Goris, M., ... Henning, R. H. (2022). Liver transcriptomic and methylomic analyses identify transcriptional MAPK regulation in facultative hibernation of Syrian hamster. bioRxiv, 2022.2012. 2001.518631.
Ou, J., Ball, J. M., Luan, Y., Zhao, T., Miyagishima, K. J., Xu, Y., ... Xie, Z. (2018). iPSCs from a hibernator provide a platform for studying cold adaptation and its potential medical applications. Cell, 173(4), 851-863. e816.
Riemondy, K. A., Gillen, A. E., White, E. A., Bogren, L. K., Hesselberth, J. R., & Martin, S. L. (2018). Dynamic temperature-sensitive A-to-I RNA editing in the brain of a heterothermic mammal during hibernation. Rna, 24(11), 1481-1495.
Ruf, T., & Bieber, C. (2023). Why hibernate? Predator avoidance in the edible dormouse. Mammal Research, 68(1), 1-11.
Schwartz, C., Ballinger, M. A., & Andrews, M. T. (2015). Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(10), R1292-R1300.
Schwartz, C., Hampton, M., & Andrews, M. (2015). Hypothalamic gene expression underlying pre‐hibernation satiety. Genes, Brain and Behavior, 14(3), 310-318.
Shankar, A., Welch Jr, K. C., Eberts, E. R., Geiser, F., Halter, S., Keicher, L., ... Wolfe, S. W. (2023). Daily Torpor in Birds and Mammals: Past, Present, and Future of the Field (Vol. 63, pp. 1017-1027): Oxford University Press.
Sheriff, M. J., Fridinger, R. W., Tøien, Ø., Barnes, B. M., & Buck, C.L. (2013). Metabolic rate and prehibernation fattening in free-living arctic ground squirrels. Physiological and Biochemical Zoology, 86(5), 515-527.
Sone, M., Mitsuhashi, N., Sugiura, Y., Matsuoka, Y., Maeda, R., Yamauchi, A., ... Enju, S. (2023). Identification of genes supporting cold resistance of mammalian cells: lessons from a hibernator. bioRxiv, 2023.2012. 2027.573489.
Spector, D. A., Deng, J., Coleman, R., & Wade, J. B. (2015). The urothelium of a hibernator: the American black bear. Physiological reports, 3(6), e12429.
Steinwand, S., Stacher Horndli, C., Ferris, E., Emery, J., Murcia, J. D. G., Rodriguez, A. C., ... Davey, C. (2024). Conserved Noncoding Cis-Elements Associated with Hibernation Modulate Metabolic and Behavioral Adaptations in Mice. bioRxiv, 2024.2006. 2026.600851.
Tøien, Ø., Blake, J., Edgar, D. M., Grahn, D. A., Heller, H. C., & Barnes, B. M. (2011). Hibernation in black bears: independence of metabolic suppression from body temperature. Science, 331(6019), 906-909.
Wijenayake, S., Tessier, S. N., & Storey, K. B. (2017). Regulation of pyruvate dehydrogenase (PDH) in the hibernating ground squirrel, (Ictidomys tridecemlineatus). Journal of Thermal Biology, 69, 199-205.
Wu, G., Baumeister, R., & Heimbucher, T. (2023). Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold. Cells, 12(10), 1353.