In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Department of Physics, Faculty of ‎Sciences, University of Payamenoor, ‎Tehran, Iran‎

2 Department of Biochemistry, Faculty ‎of Sciences, University of ‎Payamenoor, Tehran, Iran‎

3 Department of Physics, Varamin ‎region,‎‏ ‏Directorate of Education of ‎Tehran Province, Tehran, Iran‎

4 Department of Mathematics, Faculty ‎of Sciences, University of ‎Payamenoor, Tehran, Iran‎

10.30473/eab.2024.65991.1892

Abstract

Breast cancer remains a significant global health concern, necessitating the development of innovative treatment approaches. Magnetic nanoparticles (MNPs) have emerged as a promising tool in cancer therapy due to their unique properties and controllable behavior under external magnetic fields. In this paper, a two-dimensional simulation model has been used to investigate the potential of magnetic nanoparticles for breast tumor treatment. The model considers factors such as the type and size of nanoparticles, the behavior of the particles in the presence of an applied magnetic field, and the effects of MNPs on tumor tissue. Additionally, the duration of time that nanoparticles are exposed to alternating electromagnetic fields was modeled using the finite element method and Comsol Multiphysics software package. The calculation results demonstrate that the extent of tumor and healthy tissue destruction depends on the type of nanoparticles. Furthermore, an increase in the diameter of nanoparticles leads to a decrease in the percentage of tumor tissue destruction. It is important to note that increasing the amount of heating only results in more destruction of healthy tissues, thus the most significant destruction occurred within 50 minutes.

Keywords

Main Subjects

نقدآبادی فاطمه، وحیدی بهمن (1398). تحلیل اثر گرمادرمانی با نانوذرات مغناطیسی بر بافت‌های سرطانی، مجله علمی پژوهشی دانشگاه علوم پزشکی شهید صدوقی یزد.
صالح‌زاده، نوروزیان پرهام، عباسعلی پورکبیر (1393). استفاده از نانوذرات در تشخیص و درمان سرطان سینه: یک مطاله مروری، مجله علمی پژوهان.
Amtenbrink, M. H., Rechnbeevg, B., & Hofmann, H. (2009) Super paramagnetic nanoparticles for biomedical applications. Nano. Bio. App.Briceño, S., Hernandez, A. C., Sojo, J., Lascano, L., & Gonzalez, G. (2017). Degradation of magnetite nanoparticles in biomimetic media. Journal of Nanoparticle Research, 19, 1-10.
Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F. H., & Qoronfleh, M. W. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials research, 23(1), 20.
Dennis, C. L., & Ivkov, R. (2013). Physics of heat generation using magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 29(8), 715-729.
Din, F. U., Aman, W., Ullah, I., Qureshi, O. S., Mustapha, O., Shafique, S., & Zeb, A. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International journal of nanomedicine, 7291-7309.
Kumar, C. S., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced drug delivery reviews, 63(9), 789-808.
Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science, 166(1-2), 8-23.
Liu, X., Zhang, Y., Wang, Y., Zhu, W., Li, G., Ma, X., ... & Liang, X. J. (2020). Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics, 10(8), 3793.
Maenosono, S., & Saita, S. (2006). Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE transactions on magnetics, 42(6), 1638-1642.
Mohapatra, J., Xing, M., & Liu, J. P. (2019). Inductive thermal effect of ferrite magnetic nanoparticles. Materials, 12(19), 3208.
Pinel, S., Thomas, N., Boura, C., & Barberi-Heyob, M. (2019). Approaches to physical stimulation of metallic nanoparticles for glioblastoma treatment. Advanced drug delivery reviews, 138, 344-357.
Singh, S., & Repaka, R. (2017). Effect of different breast density compositions on thermal damage of breast tumor during radiofrequency ablation. Applied Thermal Engineering, 125, 443-451.
Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, 2018. CA: a cancer journal for clinicians, 68(1), 7-30.
Spirou, S. V., Costa Lima, S. A., Bouziotis, P., Vranješ-Djurić, S., Efthimiadou, E. Κ., Laurenzana, A., ... & Gobbo, O. L. (2018). Recommendations for in vitro and in vivo testing of magnetic nanoparticle hyperthermia combined with radiation therapy. Nanomaterials, 8(5), 306.
Spirou, S. V., Basini, M., Lascialfari, A., Sangregorio, C., & Innocenti, C. (2018). Magnetic hyperthermia and radiation therapy: radiobiological principles and current practice. Nanomaterials, 8(6), 401.
Thorat, N. D., Otari, S. V., Patil, R. M., Khot, V. M., Prasad, A. I., Ningthoujam, R. S., & Pawar, S. H. (2013). Enhanced colloidal stability of polymer coated La0. 7Sr0. 3MnO3 nanoparticles in physiological media for hyperthermia application. Colloids and Surfaces B: Biointerfaces, 111, 264-269.
Torres, T. E., Lima Jr, E., Calatayud, M. P., Sanz, B., Ibarra, A., Fernández-Pacheco, R., ... & Goya, G. F. (2019). The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia. Scientific reports, 9(1), 3992.
Tucci, C., Trujillo, M., Berjano, E., Iasiello, M., Andreozzi, A., & Vanoli, G. P. (2021). Pennes’ bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation. Scientific reports, 11(1), 5272.