Ademosun, A. O., Oboh, G., Bello, F., & Ayeni, P. O. (2016). Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. Journal of evidence-based complementary & alternative medicine, 21(4), NP11-NP17.
Afkham, S., Hanaee, J., Zakariazadeh, M., Fathi, F., Shafiee, S., & Soltani, S. (2022). Molecular mechanism and thermodynamic study of Rosuvastatin interaction with human serum albumin using a surface plasmon resonance method combined with a multi-spectroscopic, and molecular modeling approach. European Journal of Pharmaceutical Sciences, 168, 106005.
Akhondzadeh, S., & Abbasi, S. H. (2006). Herbal medicine in the treatment of Alzheimer's disease. American Journal of Alzheimer's Disease & Other Dementias®, 21(2), 113-118.
Baghban, R., Ghasemali, S., Farajnia, S., Hoseinpoor, R., Andarzi, S., Zakariazadeh, M., & Zarredar, H. (2021). Design and in silico evaluation of a novel cyclic disulfide-rich anti-VEGF peptide as a potential antiangiogenic drug. International Journal of Peptide Research and Therapeutics, 27, 2245-2256.
Balkis, A., Tran, K., Lee, Y. Z., Balkis, K. N., & Ng, K. (2015). Screening flavonoids for inhibition of acetylcholinesterase identified baicalein as the most potent inhibitor. Journal of Agricultural Science, 7(9), 26.
Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. (2011). Alzheimer's disease. the Lancet, 377(9770), 1019-1031.
Ballard, C. G., Greig, N. H., Guillozet-Bongaarts, A. L., Enz, A., & Darvesh, S. (2005). Cholinesterases: roles in the brain during health and disease. Current Alzheimer Research, 2(3), 307-318.
Barreca, D., Currò, M., Bellocco, E., Ficarra, S., Laganà, G., Tellone, E., Galtieri, A., & Lentile, R. (2017). Neuroprotective effects of phloretin and its glycosylated derivative on rotenone‐induced toxicity in human SH‐SY5Y neuronal‐like cells. Biofactors, 43(4), 549-557.
Blaikie, L., Kay, G., & Lin, P. K. T. (2019). Current and emerging therapeutic targets of alzheimer's disease for the design of multi-target directed ligands. MedChemComm, 10(12), 2052-2072.
Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25(24), 5789.
Cao, J., Hou, J., Ping, J., & Cai, D. (2018). Advances in developing novel therapeutic strategies for Alzheimer’s disease. Molecular neurodegeneration, 13, 1-20.
Chen, N., Wang, J., He, Y., Xu, Y., Zhang, Y., Gong, Q., & Gao, J. (2020). Trilobatin protects against Aβ25–35-induced hippocampal HT22 cells apoptosis through mediating ROS/p38/Caspase 3-dependent pathway. Frontiers in pharmacology, 11, 584.
Cummings, J., Lee, G., Ritter, A., Sabbagh, M., & Zhong, K. (2020). Alzheimer's disease drug development pipeline: 2020. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 6(1), e12050.
Cummings, J. L., Morstorf, T., & Zhong, K. (2014). Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer's research & therapy, 6(4), 1-7.
Dangles, O. (2012). Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Current Organic Chemistry, 16(6), 692-714.
De Luca, F., Di Chio, C., Zappalà, M., & Ettari, R. (2022). Dihydrochalcones as Antitumor Agents. Current Medicinal Chemistry, 29(30), 5042-5061.
de Oliveira, M.R. (2016). Phloretin‐induced cytoprotective effects on mammalian cells: A mechanistic view and future directions. Biofactors, 42(1), 13-40.
DeLano, W.L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 40(1), 82-92.
Didziapetris, R., Japertas, P., Avdeef, A., & Petrauskas, A. (2003). Classification analysis of P-glycoprotein substrate specificity. Journal of drug targeting, 11(7), 391-406.
Dwivedi, S., Malik, C., & Chhokar, V. (2017). Molecular structure, biological functions, and metabolic regulation of flavonoids. Plant Biotechnology: Recent Advancements and Developments, 171-188.
Farrokhi, H., Mozaffarnia, S., Rahimpour, K., Rashidi, M. R., & Teimuri-Mofrad, R. (2020). Synthesis, characterization and investigation of AChE and BuChE inhibitory activity of 1-alkyl-4-[(5, 6-dimethoxy-1-indanone-2-yl) methylene] pyridinium halide derivatives. Journal of the Iranian Chemical Society, 17, 593-600.
Farsad, S. A., Haghaei, H., Shaban, M., Zakariazadeh, M., & Soltani, S. (2022). Investigations of the molecular mechanism of diltiazem binding to human serum albumin in the presence of metal ions, glucose and urea. Journal of Biomolecular Structure and Dynamics, 40(15), 6868-6879.
Ferreira, L. L., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug discovery today, 24(5), 1157-1165.
Francis, P. T., Palmer, A. M., Snape, M., & Wilcock, G. K. (1999). The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry, 66(2), 137-147.
Gao, J., Liu, S., Xu, F., Liu, Y., Lv, C., Deng, Y., Shi, J., & Gong, Q. (2018). Trilobatin protects against oxidative injury in neuronal PC12 cells through regulating mitochondrial ROS homeostasis mediated by AMPK/Nrf2/Sirt3 signaling pathway. Frontiers in Molecular Neuroscience, 11, 267.
Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of combinatorial chemistry, 1(1), 55-68.
Ghumatkar, P. J., Patil, S. P., Jain, P. D., Tambe, R. M., & Sathaye, S. (2015). Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice. Pharmacology Biochemistry and Behavior, 135, 182-191.
Giacobini, E. (2001). Selective inhibitors of butyrylcholinesterase: a valid alternative for therapy of Alzheimer’s disease? Drugs & aging, 18, 891-898.
Gorun, V., Proinov, I., Băltescu, V., Balaban, G., & Bârzu, O. (1978). Modified Ellman procedure for assay of cholinesterases in crude enzymatic preparations. Analytical biochemistry, 86(1), 324-326.
Govindarajulu, M., Ramesh, S., Neel, L., Fabbrini, M., Buabeid, M., Fujihashi, A., Mohanakumar, K. P. ...& Dhanasekaran, M. (2021). Nutraceutical based SIRT3 activators as therapeutic targets in Alzheimer's disease. Neurochemistry international, 144, 104958.
Guengerich, F. P. (1997). Role of cytochrome P450 enzymes in drug-drug interactions. Advances in pharmacology, 43, 7-35.
Gürsoy, O., & Smieško, M. (2017). Searching for bioactive conformations of drug-like ligands with current force fields: how good are we? Journal of Cheminformatics, 9, 1-13.
Hodgson, J. (2001). ADMET—turning chemicals into drugs. Nature biotechnology, 19(8), 722-726.
Ibdah, M., Martens, S., & Gang, D. R. (2017). Biosynthetic pathway and metabolic engineering of plant dihydrochalcones. Journal of agricultural and food chemistry, 66(10), 2273-2280.
Işık, M., & Beydemir, Ş. (2021). The impact of some phenolic compounds on serum acetylcholinesterase: kinetic analysis of an enzyme/inhibitor interaction and molecular docking study. Journal of Biomolecular Structure and Dynamics, 39(17), 6515-6523.
Kalyaanamoorthy, S., & Barakat, K. H. (2018). Development of safe drugs: the hERG challenge. Medicinal Research Reviews, 38(2), 525-555.
Kamdi, S. P., Badwaik, H. R., Raval, A., & Nakhate, K. T. (2021). Ameliorative potential of phloridzin in type 2 diabetes-induced memory deficits in rats. European Journal of Pharmacology, 913, 174645.
Karami, K., Ramezanpour, A., Zakariazadeh, M., Shahpiri, A., Kharaziha, M., & Kazeminasab, A. (2019). Luminescent Palladacycles Containing a Pyrene Chromophor; Synthesis, Biological and Computational Studies of the Interaction with DNA and BSA. ChemistrySelect, 4(17), 5126-5137.
Karimi, G., Iranshahi, M., Hosseinalizadeh, F., Riahi, B., & Sahebkar, A. (2010). Screening of acetylcholinesterase inhibitory activity of terpenoid and coumarin derivatives from the genus Ferula. Pharmacologyonline, 1, 566-574.
Katalinić, M., Rusak, G., Barović, J. D., Šinko, G., Jelić, D., Antolović, R., & Kovarik, Z. (2010). Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry, 45(1), 186-192.
Khandan Alamdari, S., Farahmand, S., Haji Hosseini, R., & Bakhshi khaniki, G. (2023). Computational design of E6 protein inhibitors for the treatment of HPV16 disease. Experimental animal Biology, 12(2), 1-14. https://doi.org/10.30473/eab.2023.68784.1920
Kuehne, A., Floerl, S., & Hagos, Y. (2022). Investigations with drugs and pesticides revealed new species-and substrate-dependent inhibition by Elacridar and Imazalil in human and mouse organic cation transporter OCT2. International journal of molecular sciences, 23(24), 15795.
Kumar, A., & Dogra, S. (2008). Neuropathology and therapeutic management of Alzheimer's disease--An update. Drugs of the Future, 33(5), 433-446.
Kumar, A., & Singh, A. (2015). A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacological reports, 67(2), 195-203.
Łapczuk-Romańska, J., Droździk, M., Oswald, S., & Droździk, M. (2023). Kidney Drug Transporters in Pharmacotherapy. International journal of molecular sciences, 24(3), 2856.
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3), 3-25.
Long, S., Benoist, C., & Weidner, W. (2023). World Alzheimer report 2023. Reducing dementia risk: never too early, never too late. Alzheimer’s Disease International (ADI): London, UK, 7.
Ma, X.-l., Chen, C., & Yang, J. (2005). Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 26(4), 500-512.
Manikandan, P., & Nagini, S. (2018). Cytochrome P450 structure, function and clinical significance: a review. Current drug targets, 19(1), 38-54.
Mansouri, A., Kowsar, R., Zakariazadeh, M., Hakimi, H., & Miyamoto, A. (2022). The impact of calcitriol and estradiol on the SARS-CoV-2 biological activity: A molecular modeling approach. Scientific Reports, 12(1), 717.
Massoulié, J., Sussman, J., Bon, S., & Silman, I. (1993). Structure and functions of acetylcholinesterase and butyrylcholinesterase. Progress in brain research, 98, 139-146.
Mozaffarnia, S., Parsaee, F., Payami, E., Karami, H., Soltani, S., Rashidi, M. R., & Teimuri‐Mofrad, R. (2019). Design, Synthesis and Biological Assessment of Novel 2‐(4‐Alkoxybenzylidine)‐2, 3‐dihydro‐5, 6‐dimethoxy‐1H‐inden‐1‐one Derivatives as hAChE and hBuChE Enzyme Inhibitors. ChemistrySelect, 4(32), 9376-9380.
Mozaffarnia, S., Teimuri-Mofrad, R., & Rashidi, M.-R. (2020). Design, synthesis and biological evaluation of 2, 3-dihydro-5, 6-dimethoxy-1H-inden-1-one and piperazinium salt hybrid derivatives as hAChE and hBuChE enzyme inhibitors. European Journal of Medicinal Chemistry, 191, 112140.
Nordberg, A., Ballard, C., Bullock, R., Darreh-Shori, T., & Somogyi, M. (2013). A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease. The primary care companion for CNS disorders, 15(2), 26731.
Pantaleão, S. Q., Fernandes, P. O., Gonçalves, J. E., Maltarollo, V. G., & Honorio, K. M. (2022). Recent advances in the prediction of pharmacokinetics properties in drug design studies: a review. ChemMedChem, 17(1), e202100542.
Rudrapal, M., Khan, J., Dukhyil, A. A. B., Alarousy, R. M. I. I., Attah, E. I., Sharma, T.,…& Bendale, A. R. (2021). Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 26(23), 7177.
Schmidt, S., Gonzalez, D., & Derendorf, H. (2010). Significance of protein binding in pharmacokinetics and pharmacodynamics. Journal of pharmaceutical sciences, 99(3), 1107-1122.
Self, W. K., & Holtzman, D. M. (2023). Emerging diagnostics and therapeutics for Alzheimer disease. Nature Medicine, 1-13.
Shallangwa, G. A., & Adeniji, S. E. (2021). Binding profile of protein–ligand inhibitor complex and structure based design of new potent compounds via computer-aided virtual screening. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 24, 100256.
Shang, A., Liu, H.-Y., Luo, M., Xia, Y., Yang, X., Li, H.-Y.,…& Gan, R.-Y. (2022). Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits. Critical Reviews in Food Science and Nutrition, 62(4), 917-934.
Singh, S., & Singh, J. (1993). Transdermal drug delivery by passive diffusion and iontophoresis: a review. Medicinal Research Reviews, 13(5), 569-621.
Slámová, K., Kapešová, J., & Valentová, K. (2018). Sweet flavonoids: Glycosidase-catalyzed modifications. International journal of molecular sciences, 19(7), 2126.
Srivastava, S., Ahmad, R., & Khare, S. K. (2021). Alzheimer’s disease and its treatment by different approaches: A review. European Journal of Medicinal Chemistry, 216, 113320.
Stanciu, G.D., Luca, A., Rusu, R.N., Bild, V., Beschea Chiriac, S.I., Solcan, C.,…& Ababei, D. C. (2019). Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules, 10(1), 40.
Sun, M., Su, M., & Sun, H. (2018). Spectroscopic investigation on the interaction characteristics and inhibitory activities between baicalin and acetylcholinesterase. Medicinal Chemistry Research, 27(6), 1589-1598.
Szwajgier, D. (2013). Anticholinesterase activity of phenolic acids and their derivatives. Zeitschrift für Naturforschung C, 68(3-4), 125-132.
Szwajgier, D. (2014). Anticholinesterase activities of selected polyphenols–a short report. Polish Journal of Food and Nutrition Sciences, 64(1), 59-64.
Teague, S. J., Davis, A. M., Leeson, P. D., & Oprea, T. (1999). The design of leadlike combinatorial libraries. Angewandte Chemie International Edition, 38(24), 3743-3748.
Tomassini, L., Ventrone, A., Frezza, C., Fabbri, A. M., Fortuna, S., Volpe, M. T., & Cometa, M. F. (2021). Phytochemical analysis of Viburnum davidii Franch. and cholinesterase inhibitory activity of its dihydrochalcones. Natural Product Research, 35(24), 5794-5800.
Trifan, A., & Luca, S. V. (2023). Phloretin: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. In J. Xiao (Ed.), Handbook of Dietary Flavonoids (pp. 1-31). Springer International Publishing. https://doi.org/10.1007/978-3-030-94753-8_26-1
Veiga-Matos, J., Morales, A. I., Prieto, M., Remião, F., & Silva, R. (2023). Study Models of Drug–Drug Interactions Involving P-Glycoprotein: The Potential Benefit of P-Glycoprotein Modulation at the Kidney and Intestinal Levels. Molecules, 28(22), 7532.
Viet, M. H., Chen, C.-Y., Hu, C.-K., Chen, Y.-R., & Li, M. S. (2013). Discovery of dihydrochalcone as potential lead for Alzheimer’s disease: in silico and in vitro study. PloS one, 8(11), e79151.
Vrbanac, J., & Slauter, R. (2017). ADME in drug discovery. In A comprehensive guide to toxicology in nonclinical drug development (pp. 39-67). Elsevier.
Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., & Wang, Y. (2023). The blood–brain barrier: structure, regulation, and drug delivery. Signal transduction and targeted therapy, 8(1), 217.
Xie, Y., Yang, W., Chen, X., & Xiao, J. (2014). Inhibition of flavonoids on acetylcholine esterase: binding and structure–activity relationship. Food & Function, 5(10), 2582-2589.
Yazdanian, M., Glynn, S. L., Wright, J. L., & Hawi, A. (1998). Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharmaceutical research, 15(9), 1490.
Yee, S. (1997). In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharmaceutical research, 14, 763-766.
Yin, J., & Wang, J. (2016). Renal drug transporters and their significance in drug–drug interactions. Acta Pharmaceutica Sinica B, 6(5), 363-373.
Yu, S., He, M., Zhai, Y., Xie, Z., Xu, S., Yu, S.,…& Song, Y. (2021). Inhibitory activity and mechanism of trilobatin on tyrosinase: kinetics, interaction mechanism and molecular docking. Food & Function, 12(6), 2569-2579.
Yu, X.-Q., & Wilson, A. G. (2010). The role of pharmacokinetic and pharmacokinetic/ pharmacodynamic modeling in drug discovery and development. Future Medicinal Chemistry, 2(6), 923-928.
Zakariazadeh, M., Barzegar, A., Soltani, S., & Aryapour, H. (2015). Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity. Medicinal Chemistry Research, 24, 2485-2504.
Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X.,…He, L., & Qin, S. (2021). Cytochrome P450 enzymes and drug metabolism in humans. International journal of molecular sciences, 2, 2(23), 12808.
Zhong, H., Hao, L., Li, X., Wang, C., & Wu, X. (2020). Anti-inflammatory Role of Trilobatin on Lipopolysaccharide-induced Acute Lung Injury through Activation of AMPK/GSK3β-Nrf2 Pathway. Signa Vitae, 16(2), 160.
Zuo, A.-R., Yu, Y.-Y., Shu, Q.-L., Zheng, L.-X., Wang, X.-M., Peng, S.-H., … & Cao, S.-W. (2014). Hepatoprotective effects and antioxidant, antityrosinase activities of phloretin and phloretin isonicotinyl hydrazone. Journal of the Chinese Medical Association, 77(6), 290-301.