In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Faculty of Science, Payame noor ‎University, Tehran, Iran

2 Faculty of Agriculture, payame Noor ‎University, Tehran, Iran‎

10.30473/eab.2024.69344.1925

Abstract

Bromelain is an aqueous extract of pineapple contains a mixture of thiol proteases and non-protease components. In this research, the method of implementing the research was applied and quantitative, and by conducting the MTT test, information was collected. The results showed by increasing the dose of carbon nanotubes from 1 mg/L to 5 mg/L, the absorption efficiency increases significantly and the absorption capacity decreases and by increasing the initial concentration of Anahil drug from 50 mg/L to 300 mg/L in the dose of carbon nanotubes. No g 1/L the absorption capacity increased from 41.6 mg/g to 162.2 mg/g and in contrast the absorption efficiency decreased from 83.2 percent to 54.067 percent. The parameters of the adsorption equilibrium isotherms showed that the adsorption behavior of Anahil on carbon nanotubes follows the Freundlich model more than the Langmuir model. Also, the values ​​obtained for parameter n in the Freundlich model for both temperatures were higher than 2, indicating the favorable adsorption of Anahil on carbon nanotubes. The results obtained from the MTT test showed that the drug Anahil in high concentrations (100 micrograms per liter) has a very strong lethal effect. It was also shown that the lethal effect of Anahil drug was more at the beginning and decreases with the passage of time. But in the case of the new drug synthesized using the introduction of the Anahil drug to the surface of carbon nanotubes, the lethality rate becomes a constant value, which indicates the gradual release of the drug over time, which is desirable for effective cancer treatment.

Keywords

Main Subjects

Agrawal, P., Nikhade, P., Patel, A., Mankar, N., & Sedani, S. (2022). Bromelain: A Potent Phytomedicine. Cureus. 2022 Aug 11;14(8):e27876. doi: 10.7759/cureus.27876.
Amini, A., Ehteda, A., Moghaddam, S. M., Akhter, J., Pillai, K., & Morris, D. L. (2013). Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21). OncoTargets and therapy, 6, 403.
Báez, R., Lopes, M. T., Salas, C. E., & Hernández, M. (2007). In vivo antitumoral activity of stem pineapple (Ananas comosus) bromelain. Planta medica, 73(13), 1377-1383.
Bhatnagar, P., Pant, AB., Shukla, Y., Chaudhari, B., Kumar, P., & Gupta, KC. (2015) Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model. Eur J Pharm Biopharm. 2015 Apr;91:35-46. doi: 10.1016/j.ejpb.2015.01.015. Epub 2015 Jan 22. PMID: 25619920.
Bhatnagar, P., Pant, A. B., Shukla, Y., Panda, A., & Gupta, K. C. (2016). Hyaluronic Acid Grafted PLGA Copolymer Nanoparticles Enhance the Targeted Delivery of Bromelain in Ehrlich's Ascites Carcinoma. Eur. J. Pharm. Biopharm. 105, 176-192. 10.1016/j.ejpb.2016.06.002
Bhui, K., Prasad, S., George, J., & Shukla, Y. (2009). Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway. Cancer Lett. 2009 Sep 18; 282(2), 167-76. doi: 10.1016/j.canlet.2009.03.003.
Bhui, K., Tyagi, S., Srivastava, AK., Singh, M., Roy, P., Singh, R., & Shukla, Y. (2012). Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis. Mol Carcinog. 2012 Mar; 51(3), 231-43. doi: 10.1002/mc.20769.
Castell, J. V., Friedrich, G. E. R. H. A. R. D., Kuhn, C. S., & Poppe, G. E. (1997). Intestinal absorption of undegraded proteins in men: presence of bromelain in plasma after oral intake. American Journal of Physiology-Gastrointestinal and Liver Physiology, 273(1), G139-G146.
Chen, D., Love, KT., Chen, Y., Eltoukhy, AA., Kastrup, C., Sahay, G., Jeon, A., Dong, Y., & Whitehead, KA. (2012). Anderson, DG. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J Am Chem Soc. 2012 Apr 25;134(16):6948-51. doi: 10.1021/ja301621z.
Chobotova, K., Vernallis, AB., & Majid, FA. (2010). Bromelain's activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett. 2010 Apr 28; 290(2), 148-56. doi: 10.1016/j.canlet.2009.08.001.
Dave, S., Kaur, NJ., Nanduri, R., Dkhar, HK., Kumar, A., & Gupta, P. (2012). Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes. PLoS One. 2012; 7(1), e30831. doi: 10.1371/journal.pone.0030831.
Dhandayuthapani, B., Varghese, SH., Aswathy, RG., Yoshida, Y., Maekawa, T., & Sakthikumar, D. (2012). Evaluation of antithrombogenicity and hydrophilicity on zein swcnt electrospun fibrous nanocomposite scaffolds. Int J Biomater 2012, 2012, 1-12.
Eckert, K., Grabowska, E., Stange, R. A. I. N. E. R., Schneider, U., Eschmann, K. L. A. U. S., & Maurer, H. R. (1999). Effects of oral bromelain administration on the impaired immunocytotoxicity of mononuclear cells from mammary tumor patients. Oncology reports, 6(6), 1191-1200.
Gerard G: Anti-cancer therapy with bromelain. Agress, 3(1972), 261-274 
Hassan, H. A., Diebold, S. S., Smyth, L. A., Walters, A. A., Lombardi, G., & Al-Jamal, K. T. (2019). Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. Journal of controlled release, 297, 79-90.
He, H., Zhang, Y., Gao, C., & Wu, J. (2009). “Clicked” magnetic nanohybrids with a soft polymer‌interlayer. Chem. Commun, 13, 1655-1657.
He, H., Wang, L., Qiao, Y., Zhou, Q., Li, H., Chen, S., Yin, D., Huang, Q., & He, M. (2020). Doxorubicin Induces Endotheliotoxicity and Mitochondrial Dysfunction via ROS/eNOS/NO Pathway. Front Pharmacol. 2020 Jan 10;10:1531. doi: 10.3389/fphar.2019.01531.
Juhasz, B., Thirunavukkarasu, M., Pant, R., Zhan, L., Penumathsa, S. V., Secor Jr, E. R., ... & Maulik, N. (2008). Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. American journal of physiology-Heart and circulatory physiology, 294(3), H1365-H1370.
Maurer, H. R. (20010). Bromelain: biochemistry, pharmacology and medical use. Cellular and Molecular Life Sciences 58, 9, 1234-1245.
Nieper, HA. (1974). A program for the treatment of cancer. Krebs, 6, 124-127. 
Paroulek, AF., Jaffe, M., & Rathinavelu, A. (2009). The effects of the herbal enzyme bromelain against breast cancer cell line GI101A. FASEB J., 23, LB18.
Pezzani, R., Jiménez-Garcia, M., Capó, X., Sönmez, GE., Sharopov, F., Rachel, T., Yamthe, L., Ntieche, W., David, RA., Peddio, S., Zucca, P., Tsouh, F., Patrick, V., Martorell, M., Gulsunoglu-Konuskan, Z., Ydyrys, A., Bekzat, T., Gulmira, T., Hano, C., Sharifi-Rad, J., Calina, D. (2023). Anticancer properties of bromelain: State-of-the-art and recent trends. Frontiers in Oncology, 12. 10.3389/fonc.2022.1068778.       
Rathnavelu, V., Alitheen, NB., Sohila, S., Kanagesan, S., Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep. 2016 Sep;5(3):283-288. doi: 10.3892/br.2016.720.
Taussig, DC., Vargaftig, J., Miraki-Moud, F., Griessinger, E., Sharrock, K., Luke, T., Lillington, D., Oakervee, H., Cavenagh, J., & Agrawal, SG. (2010). Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood, 115, 1976-1984.
Tysnes, BB., Maurer, HR., Porwol, T., Probst, B., Bjerkvig, R., & Hoover, F. (2001). Bromelain reversibly inhibits invasive properties of glioma cells. Neoplasia, 3, 469-479.
Varilla, C., Marcone, M., Paiva, L., & Baptista, J. (2021). Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods. 2021 Sep 23; 10(10), 2249. doi: 10.3390/foods10102249.
Yiheng, H., Jie, X., Huan, L., Shoukun, H., Jianqing, J., & Jingping, R. (2020). Ethylene response factors regulate ethylene biosynthesis and cell wall modification in persimmon (Diospyros kaki L.) fruit during ripening, Postharvest Biology and Technology, Vol. 168, 111255, ISSN 0925-5214, https://doi.org/10.1016/j.postharvbio.2020.111255.
Zavadova, E., Desser, L., & Mohr, T. (1995). Stimulation of reactive oxygen species production and cytotoxicity in human neutrophils in vitro and after oral administration of a polyenzyme preparation. Cancer Biother, 10‌9, 147-152.