In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Department of Biology, Science and ‎Research Branch, Islamic Azad ‎University, Tehran, Iran‎

2 Department of Food Science and ‎Technology, Roudehen Branch, ‎Islamic Azad University, Roudehen, ‎Iran‎

3 ‎Department of Biology, Science and ‎Research Branch, Islamic Azad ‎University, Tehran, Iran‎

4 ‎Department of Biology, Roudehen ‎Branch, Islamic Azad University, ‎Roudehen, Iran‎

5 ‎1Department of Biology, Science and ‎Research Branch, Islamic Azad ‎University, Tehran, Iran‎

10.30473/eab.2023.68943.1923

Abstract

Kidney diseases are an important medical problem worldwide. Since there are limited treatment options for damaged kidneys, stem cell therapy has become an alternative treatment. The aim of present study is to investigate effect of culture medium obtained from mesenchymal stem cells (MSCs-CM) of newborn mice kidneys in percentages of 10, 30 and 50 on differentiation of embryonic stem cells towards kidney epithelial cells. Mesenchymal stem cells were isolated from kidneys of newborn mice, passaged and propagated. Determination of the identity of cells was done using flow cytometry and checking the expression of surface markers CD105, CD29, CD90. In third passage of extracted cells, supernatant culture medium was collected, hESC were cultured and multiplied in the complete culture medium of cells and the differentiation of hES cells into progenitor cells was investigated. The expression of PAX2, ZO1 and CK18 genes was investigated using RT-PCR, expression of CD133, CD24 and CD44 surface markers was investigated using flow cytometry. Flow cytometry results confirmed the mesenchymal nature of the cells. The results of differentiation of hESCs showed that expression of PAX2, ZO1 and CK18 genes increased significantly (p<0.05) in the groups containing supernatant. The results of flow cytometry show an increase in expression of CD133 and CD24 markers in groups containing CM and the expression of CD44 marker in the group containing 50% CM, compared to control group. In general, results showed supernatant culture process of cells has a positive effect on inducing differentiation of human embryonic stem cells into kidney progenitor cells.

Keywords

Main Subjects

Baddoo, M., Hill, K., Wilkinson, R., Gaupp, D., Hughes, C., Kopen, G. C., & Phinney, D. G. (2003). Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. Journal of Cellular Biochemistry, 89(6), 1235-1249. https://doi.org/10.1002/jcb.10594
Bussolati, B., Bruno, S., Grange, C., Buttiglieri, S., Deregibus, M. C., Cantino, D., & Camussi, G. (2005). Isolation of renal progenitor cells from adult human kidney. The American Journal of Pathology, 166(2), 545-555. https://doi.org/10.1016/S0002-9440(10)62276-6
 
Costello, L. C., & Franklin, R. B. (2013). A review of the important central role of altered citrate metabolism during the process of stem cell differentiation. Journal of Regenerative Medicine & Tissue Engineering, 2. https://doi.org/10.7243/2050-1218-2-1
De Gregorio, C., Contador, D., Díaz, D., Cárcamo, C., Santapau, D., Lobos-Gonzalez, L., ... & Ezquer, F. (2020). Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Research & Therapy, 11, 1-21. https://doi.org/10.1186/s13287-020-01680-0
Eckardt, K. U., Coresh, J., Devuyst, O., Johnson, R. J., Köttgen, A., Levey, A. S., & Levin, A. (2013). Evolving importance of kidney disease: from subspecialty to global health burden. The Lancet, 382(9887), 158-169. https://doi.org/10.1016/S0140-6736(13)60439-0
Ehsani, E., Shekarchian, S., Baharvand, H., Aghdami, N., & Moghadasali, R. (2019). Improved differentiation of human enriched CD133+ CD24+ renal progenitor cells derived from embryonic stem cell with embryonic mouse kidney-derived mesenchymal stem cells co-culture. Differentiation, 109, 1-8. https://doi.org/10.1016/j.diff.2019.07.001
Fanning, A. S., Jameson, B. J., Jesaitis, L. A., & Anderson, J. M. (1998). The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. Journal of Biological Chemistry, 273(45), 29745-29753. https://doi.org/10.1074/jbc.273.45.29745
Gansevoort, R. T., Correa-Rotter, R., Hemmelgarn, B. R., Jafar, T. H., Heerspink, H. J. L., Mann, J. F., ... & Wen, C. P. (2013). Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. The Lancet, 382(9889), 339-352. https://doi.org/10.1016/S0140-6736(13)60595-4
Grassmann, A., Gioberge, S., Moeller, S., & Brown, G. (2005). ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends. Nephrology Dialysis Transplantation, 20(12), 2587-2593. https://doi.org/10.1093/ndt/gfi159
Kang, M., & Han, Y. M. (2014). Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system. PloS One, 9(4), e94888. https://doi.org/10.1371/journal.pone.0094888
Kramer, J., Steinhoff, J., Klinger, M., Fricke, L., & Rohwedel, J. (2006). Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules. Differentiation, 74(2‐3), 91-104. https://doi.org/10.1111/j.1432-0436.2006.00062.x
Kubota, H., Avarbock, M. R., & Brinster, R. L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proceedings of the National Academy of Sciences, 100(11), 6487-6492. https://doi.org/10.1073/pnas.0631767100
Li, Y., & Wingert, R. A. (2013). Regenerative medicine for the kidney: stem cell prospects & challenges. Clinical and Translational Medicine, 2(1), 1-16. https://doi.org/10.1186/2001-1326-2-11
Mae, S. I., Shirasawa, S., Yoshie, S., Sato, F., Kanoh, Y., Ichikawa, H., ... & Sasaki, K. (2010). Combination of small molecules enhances differentiation of mouse embryonic stem cells into intermediate mesoderm through BMP7-positive cells. Biochemical and Biophysical Research Communications, 393(4), 877-882. https://doi.org/10.1016/j.bbrc.2010.02.111
Nishikawa, S. I., Jakt, L. M., & Era, T. (2007). Embryonic stem-cell culture as a tool for developmental cell biology. Nature Reviews Molecular Cell Biology, 8(6), 502-507. https://doi.org/10.1038/nrm2189
Nuzzo, A. M., Moretti, L., Mele, P., Todros, T., Eva, C., & Rolfo, A. (2022). Effect of placenta-derived mesenchymal stromal cells conditioned media on an LPS-induced mouse model of preeclampsia. International Journal of Molecular Sciences, 23(3), 1674. https://doi.org/10.3390/ijms23031674
Ostalska-Nowicka, D., Zachwieja, J., Nowicki, M., & Witt, M. (2004). Expression of intermediate filaments of podocytes within nephrotic syndrome glomerulopathies in children. Histochemistry and Cell Biology, 121, 109-113. https://doi.org/10.1007/s00418-004-0619-7
Pavenstädt, H. (2000). Roles of the podocyte in glomerular function. American Journal of Physiology-Renal Physiology, 278(2), 173-179. https://doi.org/10.1152/ajprenal.2000.278.2.F173
Platt, J. L., LeBien, T. W., & Michael, A. F. (1983). Stages of renal ontogenesis identified by monoclonal antibodies reactive with lymphohemopoietic differentiation antigens. The Journal of Experimental Medicine, 157(1), 155-172. https://doi.org/10.1084/jem.157.1.155
Poulsom, R., Forbes, S. J., Hodivala‐Dilke, K., Ryan, E., Wyles, S., Navaratnarasah, S., ... & Wright, N. A. (2001). Bone marrow contributes to renal parenchymal turnover and regeneration. The Journal of Pathology, 195(2), 229-235. https://doi.org/10.1002/path.976
Poursafavi, Z., Abroun, S., Kaviani Jebeli, S., & Hayati Roudbari, N. (2023). The study of the viability of human wharton's jelly mesenchymal stem cells in alginate capsules. Journal of Animal Biology, 15(2), 195-204. https://doi.org/10.22034/ASCIJ.2022.1958757.1391
Ren, X., Zhang, J., Gong, X., Niu, X., Zhang, X., Chen, P., & Zhang, X. (2010). Differentiation of murine embryonic stem cells toward renal lineages by conditioned medium from ureteric bud cells in vitro. Acta Biochim Biophys Sin, 42(7), 464-471. https://doi.org/10.1093/abbs/gmq046
Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., ... & Anders, H. J. (2017). Chronic kidney disease. Nature Reviews Disease Primers, 3(1), 1-24. https://doi.org/10.1038/nrdp.2017.88
Ronconi, E., Sagrinati, C., Angelotti, M. L., Lazzeri, E., Mazzinghi, B., Ballerini, L., ... & Romagnani, P. (2009). Regeneration of glomerular podocytes by human renal progenitors. Journal of the American Society of Nephrology: JASN, 20(2), 322. https://doi.org/10.1681/ASN.2008070709
Sadraie, M. R., Mehrabani, D., & Vahdati, A. (2015). Comparison of therapeutic effects of bone marrow mesenchymal stem cells and liquid culture environment (secreta) in the treatment of induced knee abrasion created in guinea pigs. Armaghane Danesh, 20(8), 651-665.
Sagrinati, C., Netti, G. S., Mazzinghi, B., Lazzeri, E., Liotta, F., Frosali, F., ... & Romagnani, P. (2006). Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. Journal of the American Society of Nephrology, 17(9), 2443-2456. https://doi.org/10.1681/ASN.2006010089
Saheli, M., Bayat, M., Ganji, R., Hendudari, F., Kheirjou, R., Pakzad, M., ... & Piryaei, A. (2020). Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors. Archives of Dermatological Research, 312, 325-336. https://doi.org/10.1007/s00403-019-02016-6
Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., ... & Visvader, J. E. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072), 84-88. https://doi.org/10.1038/nature04372
Steenhard, B. M., Isom, K. S., Cazcarro, P., Dunmore, J. H., Godwin, A. R., John, P. L. S., & Abrahamson, D. R. (2005). Integration of embryonic stem cells in metanephric kidney organ culture. Journal of the American Society of Nephrology, 16(6), 1623-1631. https://doi.org/10.1681/ASN.2004070584
Stenvinkel, P. (2010). Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease. Journal of Internal Medicine, 268(5), 456-467. https://doi.org/10.1111/j.1365-2796.2010.02269.x