In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Department of Environmental ‎Science, Faculty of Natural ‎Resources, University of Tehran, ‎Tehran, Iran

2 ‎Department of Animal Science, ‎School of Biology, University of ‎Damghan, ‎Damghan, Iran‎

3 Department of Environmental ‎Science, Faculty of Natural ‎Resources, University of Tehran, ‎Tehran, Iran‎

4 Department of Biodiversity, Institute ‎of Science and High Technology and ‎Environmental‏ ‏‎Sciences, Graduate ‎University of Advanced Technology, ‎Kerman, Iran‎

5 ‎Department of Human Geography, ‎Faculty of Geography, University of ‎Tehran, Iran‎

6 Department of Biology, Faculty of ‎Science, Hakim Sabzevari University, ‎Iran

10.30473/eab.2023.65397.1887

Abstract

Background: Snakebite is a global health problem and important conservation challenge. Knowing where snakebite risk is highest can help snakebite management. But climate change is altering snakebite risk pattern making its management more difficult and complicated.
Methods: In this study we used Echis carinatus’ habitat suitability as an indicator of snakebite risk, under current and future climatic conditions. We applied an ensemble of five distribution modelling methods (Generalized linear models (GLMs), Generalized additive models (GAMs), Generalized boosted models (GBMs), Maximum entropy modelling (Maxent) and Random Forest (RF)) to model the species habitat suitability. In addition, we identified villages that are at risk of envenoming form the species under current and future climate.
Results: Results showed that the species suitable habitat will increase under climate change as consequence number of villages at risk will increase from 70247 to 82881 putting more human population at risk of envenoming.
Conclusion: High snakebite risk areas identified in this study are high priority target areas for awareness raising program and antivenom distribution. This study demonstrates usefulness of habitat suitability modeling in identifying high snakebite risk area in Iran.

Keywords

Main Subjects

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science333(6045), 1024-1026.
Chippaux, J.P. (1998). Snake-bites: Appraisal of the global situation. Bulletin of the World Health Organization. 76, 515.9868843.
Dehghani, R., Fathi, B., Shahi, M. P., & Jazayeri, M. (2014). Ten years of snakebites in Iran. Toxicon90, 291-298.
Dehghani, R., Rabani, D., Shahi, M. P., Jazayeri, M., & Bidgoli, M. S. (2012). Incidence of snake bites in Kashan, Iran during an eight year period (2004-2011). Archives of trauma research1(2), 67-71.
Ebrahimi, V., Hamdami, E., Khademian, M. H., Moemenbellah-Fard, M. D., & Vazirianzadeh, B. (2018). Epidemiologic prediction of snake bites in tropical south Iran: Using seasonal time series methods. Clinical Epidemiology and Global Health6(4), 208-215.
Eslamian, L., Mobaiyen, H., Bayat-Makoo, Z., Piri, R., Benisi, R., & Behzad, M. N. (2016). Snake bite in Northwest Iran: A retrospective study. Journal of Research in Clinical Medicine4(3), 133-138.
Farzaneh, E., Fouladi, N., Shafaee, Y., Mirzamohammadi, Z., Naslseraji, F., & Mehrpour, O. (2017). Epidemiological study of snakebites in Ardabil Province (Iran). Electronic physician9(3), 3986-90.
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation24(1), 38-49.
Freeman, E. A., & Moisen, G. (2008). PresenceAbsence: An R package for presence absence analysis. Journal of Statistical Software. 23 (11), 1-31.
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: with applications in R. Cambridge University Press.
Gutiérrez, J. M., Calvete, J. J., Habib, A. G., Harrison, R. A., Williams, D. J., & Warrell, D. A. (2017). Snakebite envenoming. Nature reviews Disease primers3(1), 1-21.
Hannah, L. (2021). Climate change biology. Academic Press.
Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global change biology12(3), 450-455.
Hijmans, R.J. (2021). raster: Geographic Data Analysis and Modeling. R package version 3, 4-13.
Jarvis, A.; Reuter, H. I.; Nelson, A.; Guevara, E. (2008). Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. https ://srtm.csi.cgiar .org. Accessed on 15 Apr 2015.
Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., & de Silva, H. J. (2008). The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS medicine5(11), e218.
Longbottom, J., Shearer, F. M., Devine, M., Alcoba, G., Chappuis, F., Weiss, D. J., & Pigott, D. M. (2018). Vulnerability to snakebite envenoming: a global mapping of hotspots. The Lancet392(10148), 673-684.
Moreno‐Rueda, G., Pleguezuelos, J. M., Pizarro, M., & Montori, A. (2012). Northward shifts of the distributions of Spanish reptiles in association with climate change. Conservation Biology26(2), 278-283.
Naimi, B. (2015). Uncertainty Analysis for Species Distribution Models. package version 1,1-15.
Nori, J., Carrasco, P. A., & Leynaud, G. C. (2014). Venomous snakes and climate change: ophidism as a dynamic problem. Climatic Change122, 67-80.
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst.37, 637-669.
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.
Pintor, A. F., Ray, N., Longbottom, J., Bravo-Vega, C. A., Yousefi, M., Murray, K. A., & Diggle, P. J. (2021). Addressing the global snakebite crisis with geo-spatial analyses–Recent advances and future direction. Toxicon: X11, 100076.
Potet, J., Beran, D., Ray, N., Alcoba, G., Habib, A. G., Iliyasu, G., & Williams, D. J. (2021). Access to antivenoms in the developing world: A multidisciplinary analysis. Toxicon: X12, 100086.
Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge university press.
Rafinejad, J., Shahi, M., Navidpour, S., Jahanifard, E., & Hanafi-Bojd, A. A. (2020). Effect of climate change on spatial distribution of scorpions of significant public health importance in Iran. Asian Pacific Journal of Tropical Medicine13(11), 503-514.
Rajabizadeh, M. (2017). Snakes of Iran. Iran. Shenasi Publishing, Tehran.
Team, R. C. R. (2020). A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
Uzoma, I. E. (2020). in Human Geography- Concepts, Approaches and Trends. Stamford Lake.
Vaissi, S. (2022). Response of Iranian lizards to future climate change by poleward expansion, southern contraction, and elevation shifts. Scientific Reports12(1), 2348.
Vitt, L.J., & Caldwell, J.P. (2013). Herpetology: An Introductory Biology of Amphibians and Reptiles, 4th Edn. Cambridge, MA: Academic Press.
WHO. (2019). Snakebite envenoming: a strategy for prevention and control. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.
Yousefi, M., & Kafash, A. (2018). Venomous snakes of Iran under climate change. In SCCS Europe—4th Hungarian Student Conference on Conservation Science, 4–8 September (2018).
Yousefi, M., Kafash, A., Valizadegan, N., Ilanloo, S. S., Rajabizadeh, M., Malekoutikhah, S., Hosseinian Yousefkhani, S.S., & Ashrafi, S. (2019). Climate change is a major problem for biodiversity conservation: A systematic review of recent studies in Iran. Contemporary Problems of Ecology12, 394-403.
Yousefi, M., Ahmadi, M., Nourani, E., Behrooz, R., Rajabizadeh, M., Geniez, P., & Kaboli, M. (2015). Upward altitudinal shifts in habitat suitability of mountain vipers since the last glacial maximum. PloS one10(9), e0138087.
Yousefi, M., Kafash, A., Khani, A., & Nabati, N. (2020). Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor. Scientific Reports10(1), 18073.
Zacarias, D., & Loyola, R. (2019). Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Climatic Change152(1), 195-207.