In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Department of Biology, Science and ‎Research Branch, Islamic Azad ‎University, Tehran, Iran

2 Department of Animal Sciences, ‎Faculty of Biological Sciences, ‎Kharazmi University, Tehran, Iran

3 Department of Animal Sciences, ‎Faculty of Basic Sciences, Islamic ‎Azad University of Qom, Qom, Iran

4 ‎Department of Pathology, Faculty of ‎Specialized, Science and Research ‎Branch, Islamic Azad University, ‎Tehran, Iran

10.30473/eab.2023.68887.1922

Abstract

Liver fibrosis is a reversible disease that can be caused by various causes of liver damage and ultimately lead to severe complications such as cirrhosis, liver cancer or even death. Traditional treatments have several limitations, including insufficient therapeutic effects and side effects. Since the internalization, penetration and delivery of drugs have been facilitated with the help of nanomedicine, therefore, the use of nanotechnology in targeted drug delivery to improve liver fibrosis seems to be a suitable option. Male Wistar rats weighing 200-250 g were randomly divided into 5 groups of 8: control (healthy rats), sham (healthy rats + K3PO4), CCL4 (liver fibrosis model rats), Y2O3 30 (healthy rats + 30 mg/kg Y2O3) and CCL4+ Y2O3 30 (fibrotic rats + 30 mg/kg Y2O3). After induction of liver fibrosis by CCL4, rats received Y2O3 once daily for four weeks. At the end, the rats were anesthetized and blood was taken from the heart. A part of the liver samples was kept in 10% formalin and another part was kept at -80°C. Finally, oxidative stress markers (CAT, GPX, SOD and MDA) and liver enzyme levels (AST, ALT, ALP and GGT) were measured using ELISA method. Also, the expression of TGF-β and α-SMA genes in the liver was investigated by Real Time RT-PCR method. The use of 30 mg/kg of Y2O3 NPs did not have a favorable effect on regulating the levels of CAT, SOD, GPX, TGF-β and α-SMA, as well as MDA, AST, ALT, ALP and GGT in fibrotic rats. However, a significant improvement was observed in reducing liver tissue inflammation in CCL4+ Y2O3 30 group rats. The dose of 30 mg/kg of Y2O3 nanoparticles did not have a favorable effect on the antioxidant and biochemical indices of the liver in order to reduce liver fibrosis. But its favorable effects were observed in the fibrotic liver tissue of mice treated with Y2O3 30, especially the reduction of inflammation.

Keywords

Main Subjects

Abdelghffar, E. A., Obaid, W. A., Alamoudi, M. O., Mohammedsaleh, Z. M., Annaz, H., Abdelfattah, M. A., & Sobeh, M. (2022). Thymus fontanesii attenuates CCl4-induced oxidative stress and inflammation in mild liver fibrosis. Biomedicine & Pharmacotherapy148, 112738.
Athanasopoulou, F., Manolakakis, M., Vernia, S., & Kamaly, N. (2023). Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine18(1), 67-84.
Aydın, M. M., & Akçalı, K. C. (2018). Liver fibrosis. The Turkish Journal of Gastroenterology29(1), 14.
Caligiuri, A., Gentilini, A., Pastore, M., Gitto, S., & Marra, F. (2021). Cellular and molecular mechanisms underlying liver fibrosis regression. Cells10(10), 2759.
Frangogiannis, N. G. (2020). Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine217(3).
Ghaznavi, H., Najafi, R., Mehrzadi, S., Hosseini, A., Tekyemaroof, N., Shakeri-Zadeh, A., ... & Sharifi, A. M. (2015). Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurological research37(7), 624-632.
Gusti, A. M., Qusti, S. Y., Alshammari, E. M., Toraih, E. A., & Fawzy, M. S. (2021). Antioxidants-Related Superoxide Dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants10(4), 595.
Guyot, C., Lepreux, S., Combe, C., Doudnikoff, E., Bioulac-Sage, P., Balabaud, C., & Desmoulière, A. (2006). Hepatic fibrosis and cirrhosis: the (myo) fibroblastic cell subpopulations involved. The international journal of biochemistry & cell biology38(2), 135-151.
Hermansyah, D., Putra, A., Muhar, A. M., Wirastuti, K., & Dirja, B. T. (2021). Mesenchymal stem cells suppress TGF-β release to decrease α-SMA expression in ameliorating CCl4-induced liver fibrosis. Medical Archives75(1), 16.
Kassem, S., Arafa, M. M., Yehya, M. M., & Soliman, M. A. (2022). In vivo study of dose-dependent antioxidant efficacy of functionalized core–shell yttrium oxide nanoparticles. Naunyn-Schmiedeberg's Archives of Pharmacology, 395(5), 593-606.
Kassem, S., Arafa, M. M., Yehya, M. M., & Soliman, M. A. (2022). In vivo study of dose-dependent antioxidant efficacy of functionalized core–shell yttrium oxide nanoparticles. Naunyn-Schmiedeberg's Archives of Pharmacology395(5), 593-606.
Khaksar, M. R., Rahimifard, M., Baeeri, M., Maqbool, F., Navaei-Nigjeh, M., Hassani, S., ... & Abdollahi, M. (2017). Protective effects of cerium oxide and yttrium oxide nanoparticles on reduction of oxidative stress induced by sub-acute exposure to diazinon in the rat pancreas. Journal of Trace Elements in Medicine and Biology41, 79-90.
Li, J., Zhang, J., Zhang, B., Chen, L., Chen, G., Zhu, D., ... & Duan, Y. (2021). rSjP40 inhibited the activity of collagen type I promoter via ets-1 in HSCs. Frontiers in Cell and Developmental Biology9, 765616.
Li, X., Zhang, Q., Wang, Z., Zhuang, Q., & Zhao, M. (2022). Immune and Metabolic Alterations in Liver Fibrosis: A Disruption of Oxygen Homeostasis?. Frontiers in Molecular Biosciences, 8, 802251.
Mahmoodzadeh, Y., Mazani, M., & Rezagholizadeh, L. (2017). Hepatoprotective effect of methanolic Tanacetum parthenium extract on CCl4-induced liver damage in rats. Toxicology reports4, 455-462.
Moosavy, S. H., Eftekhar, E., Davoodian, P., Nejatizadeh, A., Shadman, M., Zare, S., & Nazarnezhad, M. A. (2023). AST/ALT ratio, APRI, and FIB-4 compared to FibroScan for the assessment of liver fibrosis in patients with chronic hepatitis B in Bandar Abbas, Hormozgan, Iran. BMC gastroenterology23(1), 1-7.
Navaei-Nigjeh, M., Daniali, M., Rahimifard, M., & Khaksar, M. R. (2020). Multi-organ toxicity attenuation by cerium oxide and yttrium oxide nanoparticles: Comparing the beneficial effects on tissues oxidative damage induced by sub-acute exposure to diazinon. Pharmaceutical Nanotechnology8(3), 225-238.
Ortiz, C., Schierwagen, R., Schaefer, L., Klein, S., Trepat, X., & Trebicka, J. (2021). Extracellular matrix remodeling in chronic liver disease. Current tissue microenvironment reports2, 41-52.
Panyala, A., Chinde, S., Kumari, S. I., Rahman, M. F., Mahboob, M., Kumar, J. M., & Grover, P. (2019). Comparative study of toxicological assessment of yttrium oxide nano-and microparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis34(2), 181-201.
Rajakumar, G., Mao, L., Bao, T., Wen, W., Wang, S., Gomathi, T., ... & Zhang, X. (2021). Yttrium oxide nanoparticle synthesis: an overview of methods of preparation and biomedical applications. Applied Sciences11(5), 2172.
Ribera, J., Rodriguez-Vita, J., Cordoba, B., Portoles, I., Casals, G., Casals, E., ... & Morales-Ruiz, M. (2019). Functionalized cerium oxide nanoparticles mitigate the oxidative stress and pro-inflammatory activity associated to the portal vein endothelium of cirrhotic rats. PLoS One14(6), e0218716.
Sakboonyarat, B., Poovieng, J., Lertsakulbunlue, S., Jongcherdchootrakul, K., Srisawat, P., Mungthin, M., & Rangsin, R. (2023). Association between raised blood pressure and elevated serum liver enzymes among active-duty Royal Thai Army personnel in Thailand. BMC Cardiovascular Disorders23(1), 1-11.
Satilmis, B., Akbulut, S., Sahin, T. T., Dalda, Y., Tuncer, A., Kucukakcali, Z., ... & Yilmaz, S. (2023). Assessment of Liver Regeneration in Patients Who Have Undergone Living Donor Hepatectomy for Living Donor Liver Transplantation. Vaccines11(2), 244.
Sergazy, S., Shulgau, Z., Kamyshanskiy, Y., Zhumadilov, Z., Krivyh, E., Gulyayev, A., & Aljofan, M. (2023). Blueberry and cranberry extracts mitigate CCL4-induced liver damage, suppressing liver fibrosis, inflammation and oxidative stress. Heliyon9(4).
Shan, L., Wang, F., Zhai, D., Meng, X., Liu, J., & Lv, X. (2022). New drugs for hepatic fibrosis. Frontiers in Pharmacology13, 874408.
Song, X., Shang, P., Sun, Z., Lu, M., You, G., Yan, S., ... & Zhou, H. (2019). Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine14(19), 2519-2533.
Song, X., Shang, P., Sun, Z., Lu, M., You, G., Yan, S., ... & Zhou, H. (2019). Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine14(19), 2519-2533.
Sun, X., Huang, X., Zhu, X., Liu, L., Mo, S., Wang, H., ... & Lin, J. (2019). HBOA ameliorates CCl4-incuded liver fibrosis through inhibiting TGF-β1/Smads, NF-κB and ERK signaling pathways. Biomedicine & Pharmacotherapy, 115, 108901.
Sun, Y., Liu, B., Xie, J., Jiang, X., Xiao, B., Hu, X., & Xiang, J. (2022). Aspirin attenuates liver fibrosis by suppressing TGF‑β1/Smad signaling. Molecular Medicine Reports25(5), 1-10.
Tan, Z., Sun, H., Xue, T., Gan, C., Liu, H., Xie, Y., ... & Ye, T. (2021). Liver fibrosis: therapeutic targets and advances in drug therapy. Frontiers in cell and developmental biology9, 730176.
Tanaka, M., & Miyajima, A. (2016). Liver regeneration and fibrosis after inflammation. Inflammation and Regeneration36(1), 1-6.
Tang, K.S. (2021). Antioxidant and anti-inflammatory properties of yttrium oxide nanoparticles: new insights into alleviating diabetes. Current diabetes reviews17(4), 496-502.
Tanwar, S., Rhodes, F., Srivastava, A., Trembling, P.M., & Rosenberg, W.M. (2020). Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World journal of gastroenterology26(2), 109.
Tee, J. K., Peng, F., & Ho, H. K. (2019). Effects of inorganic nanoparticles on liver fibrosis: Optimizing a double-edged sword for therapeutics. Biochemical pharmacology160, 24-33.
Wang, F. D., Zhou, J., & Chen, E. Q. (2022). Molecular mechanisms and potential new therapeutic drugs for liver fibrosis. Frontiers in Pharmacology13, 787748.
Xu, F., Liu, C., Zhou, D., & Zhang, L. (2016). TGF-β/SMAD pathway and its regulation in hepatic fibrosis. Journal of Histochemistry & Cytochemistry64(3), 157-167.
Yang, L., Chen, L., Chang, Y., Wang, S., & Yang, C. (2016). Serological diagnosis of liver fibrosis by quantitative estimation of serum biomarkers using Luminex xMAP assay. Int J Clin Exp Med9(6), 11299-11305.
Zhang, L., Liu, C., Yin, L., Huang, C., & Fan, S. (2023). Mangiferin relieves CCl4-induced liver fibrosis in mice. Scientific Reports13(1), 4172.
Zhao, F., Zhou, N., Wang, J. L., Zhou, H., Zou, L. Q., Zhong, W. X., ... & Wáng, Y. X. J. (2020). Collagen deposition in the liver is strongly and positively associated with T1rho elongation while fat deposition is associated with T1rho shortening: an experimental study of methionine and choline-deficient (MCD) diet rat model. Quantitative Imaging in Medicine and Surgery10(12), 2307.