Abdelghffar, E. A., Obaid, W. A., Alamoudi, M. O., Mohammedsaleh, Z. M., Annaz, H., Abdelfattah, M. A., & Sobeh, M. (2022). Thymus fontanesii attenuates CCl4-induced oxidative stress and inflammation in mild liver fibrosis. Biomedicine & Pharmacotherapy, 148, 112738.
Athanasopoulou, F., Manolakakis, M., Vernia, S., & Kamaly, N. (2023). Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine, 18(1), 67-84.
Aydın, M. M., & Akçalı, K. C. (2018). Liver fibrosis. The Turkish Journal of Gastroenterology, 29(1), 14.
Caligiuri, A., Gentilini, A., Pastore, M., Gitto, S., & Marra, F. (2021). Cellular and molecular mechanisms underlying liver fibrosis regression. Cells, 10(10), 2759.
Frangogiannis, N. G. (2020). Transforming growth factor–β in tissue fibrosis. Journal of Experimental Medicine, 217(3).
Ghaznavi, H., Najafi, R., Mehrzadi, S., Hosseini, A., Tekyemaroof, N., Shakeri-Zadeh, A., ... & Sharifi, A. M. (2015). Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurological research, 37(7), 624-632.
Gusti, A. M., Qusti, S. Y., Alshammari, E. M., Toraih, E. A., & Fawzy, M. S. (2021). Antioxidants-Related Superoxide Dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants, 10(4), 595.
Guyot, C., Lepreux, S., Combe, C., Doudnikoff, E., Bioulac-Sage, P., Balabaud, C., & Desmoulière, A. (2006). Hepatic fibrosis and cirrhosis: the (myo) fibroblastic cell subpopulations involved. The international journal of biochemistry & cell biology, 38(2), 135-151.
Hermansyah, D., Putra, A., Muhar, A. M., Wirastuti, K., & Dirja, B. T. (2021). Mesenchymal stem cells suppress TGF-β release to decrease α-SMA expression in ameliorating CCl4-induced liver fibrosis. Medical Archives, 75(1), 16.
Kassem, S., Arafa, M. M., Yehya, M. M., & Soliman, M. A. (2022). In vivo study of dose-dependent antioxidant efficacy of functionalized core–shell yttrium oxide nanoparticles. Naunyn-Schmiedeberg's Archives of Pharmacology, 395(5), 593-606.
Kassem, S., Arafa, M. M., Yehya, M. M., & Soliman, M. A. (2022). In vivo study of dose-dependent antioxidant efficacy of functionalized core–shell yttrium oxide nanoparticles. Naunyn-Schmiedeberg's Archives of Pharmacology, 395(5), 593-606.
Khaksar, M. R., Rahimifard, M., Baeeri, M., Maqbool, F., Navaei-Nigjeh, M., Hassani, S., ... & Abdollahi, M. (2017). Protective effects of cerium oxide and yttrium oxide nanoparticles on reduction of oxidative stress induced by sub-acute exposure to diazinon in the rat pancreas. Journal of Trace Elements in Medicine and Biology, 41, 79-90.
Li, J., Zhang, J., Zhang, B., Chen, L., Chen, G., Zhu, D., ... & Duan, Y. (2021). rSjP40 inhibited the activity of collagen type I promoter via ets-1 in HSCs. Frontiers in Cell and Developmental Biology, 9, 765616.
Li, X., Zhang, Q., Wang, Z., Zhuang, Q., & Zhao, M. (2022). Immune and Metabolic Alterations in Liver Fibrosis: A Disruption of Oxygen Homeostasis?. Frontiers in Molecular Biosciences, 8, 802251.
Mahmoodzadeh, Y., Mazani, M., & Rezagholizadeh, L. (2017). Hepatoprotective effect of methanolic Tanacetum parthenium extract on CCl4-induced liver damage in rats. Toxicology reports, 4, 455-462.
Moosavy, S. H., Eftekhar, E., Davoodian, P., Nejatizadeh, A., Shadman, M., Zare, S., & Nazarnezhad, M. A. (2023). AST/ALT ratio, APRI, and FIB-4 compared to FibroScan for the assessment of liver fibrosis in patients with chronic hepatitis B in Bandar Abbas, Hormozgan, Iran. BMC gastroenterology, 23(1), 1-7.
Navaei-Nigjeh, M., Daniali, M., Rahimifard, M., & Khaksar, M. R. (2020). Multi-organ toxicity attenuation by cerium oxide and yttrium oxide nanoparticles: Comparing the beneficial effects on tissues oxidative damage induced by sub-acute exposure to diazinon. Pharmaceutical Nanotechnology, 8(3), 225-238.
Ortiz, C., Schierwagen, R., Schaefer, L., Klein, S., Trepat, X., & Trebicka, J. (2021). Extracellular matrix remodeling in chronic liver disease. Current tissue microenvironment reports, 2, 41-52.
Panyala, A., Chinde, S., Kumari, S. I., Rahman, M. F., Mahboob, M., Kumar, J. M., & Grover, P. (2019). Comparative study of toxicological assessment of yttrium oxide nano-and microparticles in Wistar rats after 28 days of repeated oral administration. Mutagenesis, 34(2), 181-201.
Rajakumar, G., Mao, L., Bao, T., Wen, W., Wang, S., Gomathi, T., ... & Zhang, X. (2021). Yttrium oxide nanoparticle synthesis: an overview of methods of preparation and biomedical applications. Applied Sciences, 11(5), 2172.
Ribera, J., Rodriguez-Vita, J., Cordoba, B., Portoles, I., Casals, G., Casals, E., ... & Morales-Ruiz, M. (2019). Functionalized cerium oxide nanoparticles mitigate the oxidative stress and pro-inflammatory activity associated to the portal vein endothelium of cirrhotic rats. PLoS One, 14(6), e0218716.
Sakboonyarat, B., Poovieng, J., Lertsakulbunlue, S., Jongcherdchootrakul, K., Srisawat, P., Mungthin, M., & Rangsin, R. (2023). Association between raised blood pressure and elevated serum liver enzymes among active-duty Royal Thai Army personnel in Thailand. BMC Cardiovascular Disorders, 23(1), 1-11.
Satilmis, B., Akbulut, S., Sahin, T. T., Dalda, Y., Tuncer, A., Kucukakcali, Z., ... & Yilmaz, S. (2023). Assessment of Liver Regeneration in Patients Who Have Undergone Living Donor Hepatectomy for Living Donor Liver Transplantation. Vaccines, 11(2), 244.
Sergazy, S., Shulgau, Z., Kamyshanskiy, Y., Zhumadilov, Z., Krivyh, E., Gulyayev, A., & Aljofan, M. (2023). Blueberry and cranberry extracts mitigate CCL4-induced liver damage, suppressing liver fibrosis, inflammation and oxidative stress. Heliyon, 9(4).
Shan, L., Wang, F., Zhai, D., Meng, X., Liu, J., & Lv, X. (2022). New drugs for hepatic fibrosis. Frontiers in Pharmacology, 13, 874408.
Song, X., Shang, P., Sun, Z., Lu, M., You, G., Yan, S., ... & Zhou, H. (2019). Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine, 14(19), 2519-2533.
Song, X., Shang, P., Sun, Z., Lu, M., You, G., Yan, S., ... & Zhou, H. (2019). Therapeutic effect of yttrium oxide nanoparticles for the treatment of fulminant hepatic failure. Nanomedicine, 14(19), 2519-2533.
Sun, X., Huang, X., Zhu, X., Liu, L., Mo, S., Wang, H., ... & Lin, J. (2019). HBOA ameliorates CCl4-incuded liver fibrosis through inhibiting TGF-β1/Smads, NF-κB and ERK signaling pathways. Biomedicine & Pharmacotherapy, 115, 108901.
Sun, Y., Liu, B., Xie, J., Jiang, X., Xiao, B., Hu, X., & Xiang, J. (2022). Aspirin attenuates liver fibrosis by suppressing TGF‑β1/Smad signaling. Molecular Medicine Reports, 25(5), 1-10.
Tan, Z., Sun, H., Xue, T., Gan, C., Liu, H., Xie, Y., ... & Ye, T. (2021). Liver fibrosis: therapeutic targets and advances in drug therapy. Frontiers in cell and developmental biology, 9, 730176.
Tanaka, M., & Miyajima, A. (2016). Liver regeneration and fibrosis after inflammation. Inflammation and Regeneration, 36(1), 1-6.
Tang, K.S. (2021). Antioxidant and anti-inflammatory properties of yttrium oxide nanoparticles: new insights into alleviating diabetes. Current diabetes reviews, 17(4), 496-502.
Tanwar, S., Rhodes, F., Srivastava, A., Trembling, P.M., & Rosenberg, W.M. (2020). Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World journal of gastroenterology, 26(2), 109.
Tee, J. K., Peng, F., & Ho, H. K. (2019). Effects of inorganic nanoparticles on liver fibrosis: Optimizing a double-edged sword for therapeutics. Biochemical pharmacology, 160, 24-33.
Wang, F. D., Zhou, J., & Chen, E. Q. (2022). Molecular mechanisms and potential new therapeutic drugs for liver fibrosis. Frontiers in Pharmacology, 13, 787748.
Xu, F., Liu, C., Zhou, D., & Zhang, L. (2016). TGF-β/SMAD pathway and its regulation in hepatic fibrosis. Journal of Histochemistry & Cytochemistry, 64(3), 157-167.
Yang, L., Chen, L., Chang, Y., Wang, S., & Yang, C. (2016). Serological diagnosis of liver fibrosis by quantitative estimation of serum biomarkers using Luminex xMAP assay. Int J Clin Exp Med, 9(6), 11299-11305.
Zhang, L., Liu, C., Yin, L., Huang, C., & Fan, S. (2023). Mangiferin relieves CCl4-induced liver fibrosis in mice. Scientific Reports, 13(1), 4172.
Zhao, F., Zhou, N., Wang, J. L., Zhou, H., Zou, L. Q., Zhong, W. X., ... & Wáng, Y. X. J. (2020). Collagen deposition in the liver is strongly and positively associated with T1rho elongation while fat deposition is associated with T1rho shortening: an experimental study of methionine and choline-deficient (MCD) diet rat model. Quantitative Imaging in Medicine and Surgery, 10(12), 2307.