Amir Arasateh; Samira Vaziri; Mohammad Fazilati; Habib-ollah Nazem
Volume 7, Issue 1 , September 2018, , Pages 55-72
Abstract
Abstract Amyloids are created from various proteins in denaturant conditions. Highly active surface, makes these materials suitable for enzyme immobilization. The aim of this research was to study the production of amyloid fibrils and investigate the possibility of using them as a matrix for enzyme immobilization. ...
Read More
Abstract Amyloids are created from various proteins in denaturant conditions. Highly active surface, makes these materials suitable for enzyme immobilization. The aim of this research was to study the production of amyloid fibrils and investigate the possibility of using them as a matrix for enzyme immobilization. Response surface methodology (RSM) was used to generate the maximum amyloid content. The results of the Congored spectrometry and circular dichroism (CD) were analyzed by Design Expert 7 software (Trial version) and transmission electron microscopy was used to confirm the presence of amyloid fibrils. The immobilization was done by creating glutaraldehyde mediated crosslink of enzyme on the amyloid fibrils and kinetic factors including activity, specific activity, optimal temperature and pH and thermal stability were compared with the free enzyme. The highest amyloid content was obtained after 72.6 hours agitation of bovine serum albumin at 4.35 mg.ml-1 in mixed citrate–phosphate buffer pH=4.49 at 80 ºC and immobilized lipase was improved relative to free lipase in the case of activity, specific activity, Km and Vmax, optimal temperature and pH and thermal stability at 40 ºC. Amyloid fibrils as a rich material of chemical groups can be suitable for stabilization. This protein matrix can be a good inVivo candidate as a bio–compatible scaffold for enzyme immobilization. Amyloids with a diameter less than 100 nanometers, as new nano–materials, not only increase the stability of lipase but also enhance other kinetic properties as a new nano–matrix.
Amir Arasteh; Zolfaghar Lotfi; Mohammad Fazilat; Habibollah Nazem
Volume 6, Issue 2 , December 2017, , Pages 127-137
Abstract
Amyloid fibrils are a class of protein nanoparticles in which native proteins are converted into dense fibers. The aggregation can be pathogenic or non-pathogenic. Recently, these fibrils have been considered for the production of Bio–nanomaterials due to their unique structure. In this study, ...
Read More
Amyloid fibrils are a class of protein nanoparticles in which native proteins are converted into dense fibers. The aggregation can be pathogenic or non-pathogenic. Recently, these fibrils have been considered for the production of Bio–nanomaterials due to their unique structure. In this study, Bovine serum albumin was used as a model protein to optimize the fibrillation process. Concentrations of 2-10 mg/ml were prepared in buffer at different pH values of 3-7 and placed at 0-70 ºC for 0 to 48 hours, and the amounts of produced amyloid fibrils were analyzed by spectrophotometry, fluorimetry and circular dichroism. The spectra obtained from the Congo red absorption method were compared on the basis of the maximum wavelength and absorption at maximum wavelengths with a sample containing Congo red. The concentration of 10 mg/ml of protein, which was 48 hours in buffer at pH = 4 at 50 ºC, produced the highest amounts of amyloid. Optimum conditions were obtained by ThT fluorescence and circular dichroism at a concentration of 10 mg/ml, pH = 4, 70 ºC and 48 hours. The presence of the fibers was confirmed by transmission electron microscope images. The insoluble structure and dimensions of amyloid fibrils can be describe them as new Bio–nanomaterials. Optimizing the production of these structures allows them to be produced at higher scales.