In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Author

Assistant Professor, Department of Biology, Faculty of ‎Sciences, Payame Noor University, Tehran, Iran

Abstract

Recent reports have shown that some Plant Isoflavones have beneficial effects on diabetes and liver health in human and laboratory animals. The aim of this study was to administrate of hydroalcoholic extract of Trifolium pretense (red clover) as a plant rich in Isoflavones compounds and its effects on serum levels of glucose and liver enzymes (AST, ALT and ALP) in mice. In this experimental study, 42 male mice were divided into 6 groups of 7, including healthy control, diabetic without treatment (positive control), diabetic treated with glibenclamide groups, and three diabetic groups treated respectively with 250, 500 and 750 mg/kg of hydroalcoholic extract of red clover by gavage for 15 days. Diabetes was induced by intraperitoneal injection of streptozotocin, 60 mg/kg. On the last day, serum glucose and Liver Enzymes (ALT, ALP and AST) levels were measured. The data were analyzed by SPSS statistical software and OneWay ANOVA test. The significant was shown with (P<0.05).Doses of 500 mg/kg and 750 mg/kg of extract were significantly (P<0.001) decreased serum glucose compared with positive control group.  Assessment of liver enzymes shown that AST level in 750mg/kg group (P<0.001), ALT level in 500 mg/kg (P<0.01) and 750 mg/kg (P<0.001) groups, and ALP level in 250 mg/kg (P<0.05), 500 mg/kg (P<0.001) and 750 mg/kg (P<0.001) groups significantly decreased compared with positive control group. It seems that the red clover has anti-diabetic and hepatoprotectiveeffects.

Keywords

Ae Park, S.; Choi, M.S.; Cho, S.Y.; Seo, J.S.; Jung, U.J.; Kim, M.J.; et al. (2006). Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci; 79(12): 1207-13.
Androli, T.; Carpenter, C.; Griggs, R.; Benjamin, I. (2007). Diseases of the Liver and Biliary System. in: Cecil's Essentials of Medicine. 7th ed. USA: WB Saunders Company.
Azad Bakht, M. (2006). Phytoestrogens. Journal of Medical Plants; 6(21): 1–10.
Azizi, R.; Goodarzi, M.T.; Salemi, Z. (2014). Protective effect of biochanin A on the hepatic and renal function of diabetic rats. Daneshvar Medicine; 21(109): 7-16.
Bhathena, S.J.; Velasquez, M.T. (2002). Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr; 76: 1191-1201.
Bindu, J.; Narendhirakannan, R.T.  (2019). Role of medicinal plants in the management of diabetes mellitus: a review. Biotech; 9(1): 4.
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; et al. (2017). Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol (Lausanne); 8: 6.
Choi, M.S.; Jung, U.J.; Yeo, J.; Kim, M.J.; Lee, M.K. (2008). Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab Res Rev; 24(1): 74-81.
Fu, Z.; Gilbert, E.R.; Pfeiffer, L.; Zhang, Y.; Fu, Y.; Liu, D. (2012). Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl Physiol Nutr Metab; 37(3): 480-8.
Gautam, J.; Khedgikar, V.; Kushwaha, P.; Choudhary, D.; Nagar, G.K.; Dev, K.; et al. (2017). Formononetin, an isoflavone, activates AMP-activated protein kinase/β-catenin signalling to inhibit adipogenesis and rescues C57BL/6 mice from high-fat diet-induced obesity and bone loss. Br J Nutr; 117(5): 645-61.
Hagh-Nazari, L.; Goodarzi, N.; Zangeneh, M.M.; Zamgeneh, A.; Tahvilin, R.; Moradi, R. (2017). Stereological study of kidney in streptozotocin-induced diabetic mice treated with ethanolic extract of Stevia rebaudiana (bitter fraction). Comp Clin Pathol; 26: 455-63.
Howes, J.B.; Tran, D.; Brillante, D.; Howes, L.G. (2003). Effects of dietary supplementation with isoflavones from red clover on ambulatory blood pressure and endothelial function in postmenopausal type 2 diabetes. Diabetes Obes Metab; 5(5): 325-32.
Jamali, R.; Jamali, A. (2010). Non-alcoholic fatty liver disease. Feyz, Journal of Kashan University of Medical Sciences; 14(2): 169-81.
Jayagopal, V.; Albertazzi, P.; Kilpatrick, E.S.; et al. (2002). Beneficial effects of soy phytoestrogen intake in postmenopausal women with type 2 diabetes. Diabetes Care; 25: 1709-14.
Karale, S.; Kamath, J.V. (2017). Effect of daidzein on cisplatin-induced hematotoxicity and hepatotoxicity in experimental rats. Indian J Pharmacol; 49(1): 49-54.
Khazaei M, Pazhouhi M. Protective effect of hydroalcoholic extracts of Trifolium pratense L. on pancreatic β cell line (RIN-5F) against cytotoxicty of streptozotocin. Res Pharm Sci. 2018; 13(4): 324-31.
Kim, W.; Flamm, S.; Bisceglie, A.D.; Bodenheimer, H. (2008). Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology; 47(4): 1363-70.
Kooti, M.; Farokhipour, M.;  Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. (2016). The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician; 8(1): 1832-42.
Kota, BP.; Huang, T.H.; Roufogalis, B.D. (2005). An overview on biological mechanisms of PPARs. Pharmacol Res; 51: 85-94.
Kuzu, N.; Metin, K.; Dagli, A.F.; Akdemir, F.; Orhan, C.; Yalniz, M.; et al. (2007) Protective role of genistein in acute liver damage induced by carbon tetrachloride. Mediators Inflamm; 2007:36381.
Lee, JS. (2006). Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocininduced diabetic rats. Life Sci; 79: 1578-1584.
Li, Z.; Hong, K.; Saltsman, P.; et al. (2005). Long-term efficacy of soy-based meal replacements vs an individualized diet plan in obese type II DM patients: relative effects on weight loss, metabolic parameters, and C-reactive protein. Eur J Clin Nutr; 59: 411-418.
Loguercio, C.; Federico, A. (2003). Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med; 34(1): 1-10.
Mezei, O.; Banz, W.J.; Steger, R.W.; Peluso, M.R.; Winters, T.A.; Shay, N. (2003). Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J Nutr; 133: 1238-1243.
Mueller, M.; Hobiger, S.; Jungbauer, A. (2010). Red clover extract: a source for substances that activate peroxisome proliferator-activated receptor alpha and ameliorate the cytokine secretion profile of lipopolysaccharide-stimulated macrophages. Menopause; 17: 379-387.
Pandey, K.B.; Rizvi, S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev; 2: 270-278.
Qiu, L.; Chen, T.; Zhong, F.; Hong, Y.; Chen, L.; Ye, H. (2012). Red clover extract exerts antidiabetic and hypolipidemic effects in db/db mice. Exp Ther Med; 4(4): 699-704.
Qiu, L.; Lin, B.; Lin, Z.; Lin, Y.; Lin, M.; Yang, X. (2012). Biochanin A ameliorates the cytokine secretion profile of lipopolysaccharidestimulated macrophages by a PPARγ-dependent pathway. Mol Med Report; 5: 217-22.
Rabiei, Z.; Movahedi, E.; Rafieian-Kopaei, M.; Lorigooini, Z. (2018). Antidepressant effects of Trifolium pratense hydroalcholic extract in miceIr J Physiol Pharmacol; 2(1): 33-24.
Rahmatullah, M.; Azam, M.N.; Khatun, Z.; Seraj, S.; Islam, F.; Rahman, M.A. et al. (2012). Medicinal plants used for treatment of diabetes by the Marakh sect of the Garo tribe living in Mymensingh district, Bangladesh. Afr J Tradit Complement Altern Med; 9(3): 380-5.
Romeo, S.; Sentinelli, F.; Dash, S.; Yeo, G.; Savage, D.; Leonetti, F.; et al. (2010). Morbid obesity exposes the association between PNPLA3 I148M (rs738409) and indices of hepatic injury in individuals of European descent. International journal of obesity; 34(1): 190-4.
Sabudak, T.; Guler, N. (2009). Trifolium L. a review on its phytochemical and pharmacological profile. Phytother Res; 23(3): 439-46.
Salahshoor, M.R.; Roshankhah, S.; Hosseni, P.; Jalili, C. (2018). Genistein Improves Liver Damage in Male Mice Exposed to Morphine. Chin Med J (Engl); 131(13): 1598-04.
Shen, P.; Liu, M.H.; Ng, T.Y.; Chan, Y.H.; Yong, E.L. (2006). Differential effects of isoflavones, from Astragalus membranaceus and Pueraria thomsonii, on the activation of PPARalpha, PPARgamma, and adipocyte differentiation in vitro. J Nutr; 136: 899-905.
Sonksen, P.; Sonksen, J.; (2000). Insulin: understanding its action in health and disease. Brit J Anaesth; 85(1): 69-79.
Tundis, R.; Marrelli, M.; Conforti, F.; Concetta Tenuta, M.; Bonesi, M.; Menichini, F.; et al. (2015). Trifolium pratense and T. repens (Leguminosae): Edible Flower Extracts as Functional Ingredients. Foods; 4(3): 338-48.
Usui, T. (2006). Pharmaceutical prospects of phytoestrogens. Endocr J; 53: 7-20.
Watjen, W.; Michels, G.; Steffan, B.; Niering, P.; Chovolou, Y.; Kampkotter, A.; et al. (2005). Low concentrations of flavonoids is protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. The Journal of Nutrition; 135(3): 525-31.
Zangeneh, M.M.; Goodarzi, N.; Zangeneh, A. (2018). Evaluation of Antidiabtic and hepatoprotective effects of aquatic extract of Stevia rebaudiana leaves (sweet fraction) in streptozotocin-induced diabetic mice. J Shahid Sadoughi Uni Med Sci; 26(4): 319-29.
Zhao, J.; Yue, W.; Zhu, M.J.; et al. (2010). AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun; 395: 146–51.
Zhao, J.X.; Yue, W.F.; Zhu, M.J.; et al. (2011). AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem; 286: 16426-434.