Investigating the effect of silver nanoparticles synthesized using Sargassum angustifolium on the bacterial flora of common carp skin, Cyprinus carpio

Document Type : Article


1 Assistant Professor, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran

2 Associate Professor, Faculty of Veterinary, Shahid Chamran University of Ahwaz, Ahwaz, Iran

3 Professor, Faculty of Veterinary, Shahid Chamran University of Ahwaz, Ahwaz, Iran



In this study, in order to investigate the antibacterial properties of silver nanoparticles that were synthesized using Sargassum seaweed extract by biological extracellular method, Mesophile Enterobacteriaceae, lactic acid bacteria and psychrophilic bacteria skin of common carp exposed to three concentration (0.11, 1.13, 5.67 mg/L AgNP) of this silver nanoparticles were studied for 14 days. The results showed that with increasing concentration of silver nanoparticles, the load of Enterobacteriaceae and Mesophile significantly reduced compared with control (p0.05). The lowest bacterial count was related to enterobacteria (log cfu/cm2 1.00±0.01), when exposed to concentration 1.13 mg/L AgNP. Lactic acid bacteria in all treatments and in control, did not grow until the last day of exposure.



Ahamed, M.; Posgai, R.; Geory, T.J.; Nielsen, M.; Hussain, S.M. and Rowe, J.J.; (2010). Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicology and Applied  Pharmacology, 242: 263–269.
Ahmed, M.; Karns, M.; Goodson, M.; Rowe, J.; Hussain, S.M.; Schlager, J.J.; et al.; (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicologyand Applied Pharmacology, 233:404–410.
Govindaraju, K.; Kiruthiga, V.; Ganesh Kumar, V. and Singaravelu, G. (2009). Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii, Grevilli and their antibacterial effects. Journal of Nanoscience and Nanotechnology, 9: 5497-5501.
Kalbasi, M. R.; Abdullah Zadeh, A.; Salariya Joo, H.; (2012). Effects of colloidal silver nanoparticles on the bacterial flora of the rainbow trout colony (Oncorhynchus mykiss). Journal of Veterinary Research, 67(2): 181-189.
Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G.; (1999). Silver- Based Crystalline Nanoparticles, Microbially Fabricated. Proceedings of the National Academy of Sciences journal, 96: 13611-13614.
Kumar, P.; Senthamil Selvi, S.; Lakshmi Prabha, A.; Prem Kumar, K.; Ganeshkumar, R.S.; Govindaraju, M.; (2012). Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomedicine Engineering, 4 (1): 2-16.
Li, S.; Shen, Y.; Xie, A.; Yu, X.; Qiu, L.; Zhang, L.; Zhang, Q.; (2007). Green synthesis of silver nanoparticles using Capsicum annuum leaf extract. Green Chemistry, 9: 852-858.
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; et al.; (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16: 23-46.
Nair, R.; Chabhadiya, R.; Chanda, S.; (2007). Marine algae: Screening for a potent antibacterial agent. Journal of Herbal Pharmacotherapy, 7: 73-86.
Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Veerova, R.; Pizurova, N.; et al.; (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry, 110: 16248-16253.
Percival, S.L.; Bowler, P.G.; Dolman, J.; (2007). Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. International Wound Journal, 4: 186-191.
Pineda, L.; Chwalibog, A.; Sawosz, E.; Lauridsen, C.; Engberg, R.; Elnif, J.; Hotowy, A.; Sawosz, F.; Gao, Y.; Ali, A.; Sepehri Moghaddam, H.; (2012). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens, Archives of Animal Nutrition, 66(5): 416-429.
Rather, MA.; Sharma, R.; Aklakur, M.; Ahmad, S.; Kumar, N.; Khan, M.; et al.; (2011). A Novel Tool for Aquaculture and Fisheries Development. A Prospective Mini-Review. Fisheries and Aquaculture Journal, 16: 1-5.
Ringù, E.; Bendiksen, H.R.; Wesmajervi, M.S.; Olsen, R.E.; Jansen, P.A.;  Mikkelsen, H.; (2000). Lactic acid bacteria associated with the digestive tract of Atlantic salmon (Salmo salar L). Journal of Applied Microbiology, 89: 317-322.
Sawosz, E.; Chwalibog, A.; Mitura, K.; Mitura, S.; Awzeliga J.;  Niemiec, T.; et al.; (2011). Visualisation of morphological interaction of diamond and silver nanoparticles with Salmonella enteritidis and Listeria monocytogenes. Journal of Nanoscience and Nanotechnology, 11:7635–7641.
Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S.; (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3:168-171.
Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D.; (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18: 225103-225111.
Soltani, M.; Ghodratnema, M.; Ahari, H.; Ebrahimzadeh Mousavi, H.A.; Atee, M.; Dastmalchi, F.; et al.; (2009).The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Aeromonas hydrophila. International Journal of Veterinary Research, 3: 137-142.
Song, K.C.; Lee, S.M.; Park, T.S.; Lee, B.S.; (2009). Preparation of colloidal silver nanoparticles by chemical reduction method. Korean Journal of Chemistry Engineering, 26: 153-155.
Suriya, J.; Bharathi R.S.; Sekar, V. and Rajasekaran, R.; (2012). Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. African Journal of Biotechnology, 11(58): 12192-12198.
Uddin, N.; Al-Harbi, A.H.; (2012). Bacterial flora of polycultured common carp (Cyprinus carpio) and African catfish (Clarias gariepinus). International Aquatic Research, 4:1-10.