In collaboration with Payame Noor University and Iranian Society of Physiology and Pharmacology

Document Type : Article

Authors

1 Associate Professor, Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.

2 Professor, Department of Biology, College of Science, Fars Science and Research Branch, Islamic Azad University, Fars, Iran and Department of Biology, College of Science, Shiraz Branch , Islamic Azad University, Shiraz, Iran.

3 Associate Professor, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran and Department of Endodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran.

Abstract

Abstract

Orexin A and orexin B are hypothalamic neuropeptides that have critical roles in the regulation of physiological responses such as pain. C-fos is neural activity markers in painful situations. This study was designed to evaluate the role of trigeminal nucleus caudalis (TNC) orexin 1 receptor on capsaicin-induced orofacial pain and c-fos expression in TNC. In this experimental study, 70 male Wistar rats (200-250 g) were randomly allocated into 10 groups: control, pain, sham surgery, sham capsaicin, surgery and pain, sham orexin A and pain, orexin A (50 pM/rat) and pain, sham SB-334867 and pain, SB-334867 (40 nM/rat) as antagonist­ and pain, orexin A plus SB-334867 and pain. Following cannula implantation and recovery period, the drugs were administration 20 min before capsaicin injection. C-fos expression in TNC was evaluated using immunohistochemistry. The capsaicin-injected rats showed a significant pain behavior and expression c-fos (p

Keywords

REFERENCES
 
Amirkhosravi, L.; Raoof M.; Raoof, R.; Abbasnejad, M.; Esmaeili Mahani, S.; Ramazani, M.; (2014). Is inflammatory pulpal pain a risk factor for amnesia? Iranian Journal of Veterinary Science and Technology (IJVS); 6: 62-76.
Azhdari Zarmehri, H.; Semnanian, S.; Fathollahi, Y.; (2008). Comparing the analgesic effects of periaqueductal gray matter injection of orexin A and morphine on formalin-induced nociceptive behaviors. Physiol Pharmacol; 12:­188-193. (in Persian)
Bahaaddini, M.; Khatamsaz, S.; Esmaeili-Mahani, S.; Abbasnejad, M.; Raoof, M. (2016). The role of trigeminal nucleus caudalis orexin 1 receptor in orofacial pain-induced anxiety in rat. Neuroreport; 19; 27(15):1107-13.
Balam, T.A.; Yamashiro, T.; Zheng, L.; Murshid, A.S.; Fujiyoshi, Y.; Takano-Yamamoto, T.; (2005). Experimental tooth movement upregulates preproenkephalin mRNA in the rat trigeminal nucleus caudalis and oralis. Brain Res; 1036:196-201.
Bartsch, T.; Levy, M.J.; Knight, Y.E., Goadsby, P.J.; (2004). Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain; 109(3):367-378.
Berridge, C.W.; Espana, R.A.; Vittoz, N.M.; (2010). Hypocretin/Orexin in arousal and stress. Brain Res; 1314:91-102.
Bingham, S.; Davey, P.T.; Babbs, A.J., Irving, E.A.; Sammons, M.J.; Wyles, M.; (2001). Orexin A, hypothalamic peptide with analgesic properties. Pain; 92: 81-90.
Chamani Gelyan, S.; (2014). Evaluation of Apelin Receptor Gene Expression by MCF-7 Breast Cancer Cell Line and Breast Cancer. Thesis. Shahid Bahonar University of Kerman.
Chidiac, J.J.; Rifai, K.; Hawwa, N.N.; Massaad, C.A.; Jurjus, A.R.; Jabbur, S.J.; et al.; (2002). Nociceptive behaviour induced by dental application of irritants to rat incisors: A new model for tooth inflammatory pain. Eur. J. Pain; 6: 55-67.
Chidiac, J.J.; Al-Asmar, B.; Rifai, K.; Jabbur, S.J.; Saade, N.E.; (2009). Inflammatory mediators released following application of irritants on the rat injured incisors, the effect of treatment with anti-inflammatory drugs. Cytokine; 46:­ 194-200.
Ciriello, J.; de, Oliveira, C.V.; (2003). Cardiac effects of hypocretin-1 in nucleus ambiguus. Am J Physiol Regul Integr Comp Physiol; 284:R1611-1620.
Coggeshall, R.E.; (2005). Fos, nociception and the dorsal horn. Prog Neurobiol; 77(5): 299-352.
Gomes, M.C.; Pinto-Sarmento, T.C.; Costa, E.M.; Martins, C.C.; Granville-Garcia, A.F.L.; Paiva, S.M.; (2014). Impact of oral health conditions on the quality of life of preschool children and their families: A cross-sectional study. J Health Quality Life Outcomes; 12(1): 55.
Harris, J.A.; (1998). Using c-fos as a neural marker of pain. Brain Res Bull; 45(1): 1-8.
Hayati, A.; Ismail, A; Ismail, Z.; (2002). C-fos and its Consequences in Pain. Malays J Med Sci. Jan; 9(1): 3-8.
Holland, P.R.; Akerman, S.; Goadsby, P.J.; (2005). Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. The Journal of Pharmacology and Experimental Therapeutics; 315(3): 1380-1385.
Kooshki, R.; Abbasnejad, M.; Esmaeili-Mahani, S.; Raoof, M.; (2016). The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats. Physiology & Behavior; 157: 20-27.
Korotkova, T.M.; Eriksson, K.S.; Haas, H.L.; Brown, R.E.; (2002). Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regul Pept; 104: 83-89.
Kramer, P.F.; Feldens, C.A.; Ferreira, S.H.; Bervian, J.; Rodrigues, P.H.; Peres, M.A.; (2013). Exploring the impact of oral diseases and disorders on quality of life of preschool children. J Community Dent Oral Epidemiol; 41(4): 235-7.
Krishnan, V.; (2007). Orthodontic pain: from causes to management–a review. Eur J Orthod; 29: 170-179.
Maixner, W.; Diatchenko, L.; Dubner, R.; Fillingim, RB.; Greenspan, JD.; Knott, C. et al.; (2011). Orofacial pain prospective evaluation and risk assessment study the OPPERA study. J Pain; 12(11): 4-11.
Mobarakeh, J.I.; Takahashi, K.; Sakurada, S.; Nishino, S.; Watanabe, H.; Kato, M.; Yanai, K.; (2005). Enhanced antinociception by intracerebroven-tricularly and intrathecally-administered orexin A and B (hypocretin-1 and -2) in mice. Peptides; 26: 767-777.
Munglani, R.; Hunt, S.P.; (1995). Molecular biology of pain. Br. J. Anaes; 75:­ 186­-­192.
Paxinos, G.; Watson, C.A.; (1998). Stereotaxic Atlas of the Rat Brain, Academic, New York.
Pellow, S.; Chopin, P.; File, S.E.; Briley, M.; (1985). Validation of open: closed arm entries in an elevated plus- maze as a measure of anxiety in the rat. Journal of Neuroscience Methods; 14(3): 149-167.
Raoof, M.; Ebrahimnejad, H.; Abbasnejad, M.; Amirkhosravi, L.; Raoof, R.; Ramazani, M.; (2016). The effects of inflammatory tooth pain on anxiety in adult male rats.Basic and Clinical Neuroscience; accepted.
Sadeghi, S.; Raeisi, Z.; Azhdari-Zarmehri, H.; Haghparast, A.; (2013). Involvement of orexin-1 receptors in the ventral tegmental area and the nucleus accumbens in antinociception induced by lateral hypothalamus stimulation in rats. Pharmacol Biochem Behav; 105: 193-198.
Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, RM.; Tanaka, H.; (1998). Orexin and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell; 92: 573-585.
Schellinck, H.M.; Stanford, L.; Darrah, M.; (2003). Repetitive acute pain in infancy increases anxiety but does not alter spatial learning ability in juvenile mice. Behav Brain Res; 142(1-2):157-65.
Sessle, B.J.; (2000). Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Critical Reviews in Oral Biology & Medicine; 11: 57.
Siqueira-Lima, P.S.; Silva, J.C.; Quintans, J.S.S.; Antoniolli, A.R.; Shanmugam, S.; Barreto, RSS. et al.; (2017). Natural products assessed in animal models for orofacial pain-a systematic review. Revista Brasileira de Farmacognosia; 27: 124-134.
Smith, M.A.; Banerjee, S.; Glowa, J.; (1992). Induction of c-fos mRNA in rat brain by conditioned and unconditioned stressors. Brain Res; 578: 135-141.
Supronsinchai, W.; Storer, R.J.; (2015). C-Fos: A neural activity marker for craniofacial pain research. CU Dent J; 38: 77-92.
Tamaddonfard, E.; Erfanparast, A.; Khalilzadeh, E.; (2012). Effect of pilocarpine on the formalin-induced orofacial pain in rats. Veterinary Research Forum; 3(2): 91-95.         
Tarsa, L.; Balkowiec-Iskra, E.; kratochvil, Lii, F.J.; Jenkis, V.K.; Mclean, A.; Brown, A.L.; (2010). Tooth plup inflammation increases brain-derived neurotrophic factor expression in rodent trigeminal ganglion neurons. Neuroscience; 167: 1205-1215.
Van Den Pol, A.N.; (1999). Hypothalamic hypocretin (orexin): robust innervations of the spinal cord. J Neurosci; 19: 3171.
Watanabe, S.; Kuwaki, T.; Yanagisawa, M.; Fukuda, Y.; Shimoyama, M.; (2005). Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport; 16(1): 5-8.
Wong, H.M.; McGrath, C.P.; King, N.M,; Lo, E.C.; (2011). Oral health-related quality of life in Hong Kong preschool children. Caries Res; 45(4): 370-6.
Yamaguchi, M.; Kojima, T.; Kanekawa, M.; Aihara, N.; Nogimura, A.; Kasai, K., (2004). Neuropeptides stimulate production of interleukin-i beta, interleukin-6, and tumor necrosis factor-a in human dental pulp cells. Inflamm Res; 53: 199-­204.
Yamamoto, T.; Saito, O.; Shono, K.; Hirasawa, S.; (2003). Activation of spinal orexin- 1receptor produces anti-allodynic effect in the rat carrageenan test. Eur J Pharmacol; 481: 175.